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Abstract

The R language, from the point of view of language design

and implementation, is a unique combination of various pro-

gramming language concepts. It has functional characteris-

tics like lazy evaluation of arguments, but also allows expres-

sions to have arbitrary side effects. Many runtime data struc-

tures, for example variable scopes and functions, are acces-

sible and can be modified while a program executes. Several

different object models allow for structured programming,

but the object models can interact in surprising ways with

each other and with the base operations of R.

R works well in practice, but it is complex, and it is a chal-

lenge for language developers trying to improve on the cur-

rent state-of-the-art, which is the reference implementation –

GNU R. The goal of this work is to demonstrate that, given

the right approach and the right set of tools, it is possible

to create an implementation of the R language that provides

significantly better performance while keeping compatibility

with the original implementation.

In this paper we describe novel optimizations backed

up by aggressive speculation techniques and implemented

within FastR, an alternative R language implementation, uti-

lizing Truffle – a JVM-based language development frame-

work developed at Oracle Labs. We also provide experimen-

tal evidence demonstrating effectiveness of these optimiza-

tions in comparison with GNU R, as well as Renjin and

TERR implementations of the R language.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Optimization, Run-time environ-

ments

Keywords R language, Truffle, Graal, optimization

1. Introduction

The R language is an open-source descendant of the S lan-

guage, and was created by Ross Ihaka and Robert Gentleman

at the University of Auckland in the 1990s [9]. Its predeces-

sor, S, was created by John Chambers et al. at Bell Labs in

the 1970s, and began as a set of macros simplifying access

to Fortran’s statistical libraries [2]. Over the years, the lan-

guage has become increasingly more popular, with its ap-

plications including data discovery and analysis as well as

machine learning, over 11,000 packages in the CRAN 1 and

Bioconductor 2 repositories, and its user base exceeding 2

million [18]. At the same time, the language has also grown

quite complex, becoming a mix of many different program-

ming language paradigms in sometimes unusual and surpris-

ing combinations. For example, R’s syntax is superficially

similar to languages like Java or JavaScript, but at the same

time all arguments are lazily evaluated. It is both functional,

in that functions in R are first-class data structures and it

is, in practice, largely side effect free, but it is also object

oriented and those side effects that do occur are largely un-

controlled (in particular, due to lack of support in the type

system). R also supports deep introspection and allows for

extensive modifications to runtime data structures, for ex-

ample, iterating and modifying symbol lookup chains at run-

time.

For over 20 years R had only one reference implementa-

tion, GNU R, and it is only recently that alternative imple-

mentations with varying goals and underlying assumptions

started to emerge (see Section 7 section for details). GNU R

is the most mature implementation and has worked well in

practice, but has some limitations (e.g., slow execution of

R code due to it being interpreted) that make it less suited

to face some of the emerging challenges, particularly in the

realm of so called big data.

In this paper we present FastR3, an alternative implemen-

tation of R that efficiently implements all important and dif-

ficult to optimize features of the language. FastR is built on

top of Truffle [27], a framework for developing program-

ming languages utilizing a JVM (Java Virtual Machine).

Our main contribution is to demonstrate that, even when

considering a complicated set of language features, aggres-

1 http://cran.r-project.org 2 http://www.bioconductor.org
3 We share the name and part of the code base with our (mostly spiritual)

predecessor, called Purdue-FastR [11, 17]. This earlier prototype is now

largely abandoned and it did not implement many important language

features, such as the S3 object model that is extensively used in R libraries.
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sive speculation expressed in terms of only a small set of

fundamental techniques, if properly supported by the un-

derlying infrastructure, can be very effective in deliver-

ing a highly performant language runtime, especially when

combined with a carefully selected and implemented set of

language-level optimizations. In particular:

• We describe how different facets of speculation, that is

caching, system-wide assumptions and specialization,

help in developing novel optimizations of R’s lazy eval-

uation in presence of largely unrestricted side effects.

• We show how the same techniques are effective in opti-

mizing R’s symbol lookups, function and method calls,

and vector access operations.

• We demonstrate effectiveness of our lazy evaluation opti-

mizations as well as present overall performance compar-

ison between FastR and other implementations, based on

experimental evaluation using a variety of benchmarks.

In our set of benchmarks, FastR is on average ∼97x faster

than GNU R (with ∼7x geomean speedup).

2. The Challenge

On the surface, R looks similar to other popular program-

ming languages such as Java or JavaScript. For example,

consider the following function:

function(x) {

for (i in 1:10000) {

x[i] <- i

}

}

With <- and [] being R’s assignment operator and indexing

operator, respectively, and 1:10000 representing a sequence

of numbers between 1 and 10000, execution of this state-

ment will result in populating some indexable data structure

x with consecutive numbers. Two main indexable data types

in R are vectors and lists, the former containing elements of

the same primitive type (e.g., a number), and the latter po-

tentially containing elements of different types. Operations

on vectors of numbers are very frequent in R and, as such, it

is expected that they are performed efficiently. The example

above, assuming x to represent a vector of numbers, would

ideally have similar performance to an array assignment in

Java.

Unfortunately, syntax is where the similarities between R

and languages like Java or even more dynamic languages

like JavaScript end. In particular, function arguments are

lazily evaluated in R, so that each argument (e.g., argument

x in the example above) is represented by a promise 4 – an

internal data structure storing the expression and the evalua-

tion environment used to compute concrete argument values

when needed. This complicates the implementation, not only

due to the overhead of creating promises throughout the call

4 In other lazy evaluated languages, such as Haskell, also called thunk.

chains, but also due to function code being “polluted” by the

code needed to obtain concrete argument values (see Section

5.2 for more details).

Another complication is that assignment operator, index-

ing operator, curly brace and all keywords are implemented

as functions5. These functions can potentially have side-

effects, and their definitions can change at any time during

execution of the loop, for example, looking up the assign-

ment function <- could lead to different results in different

iterations of the loop. Furthermore, because variable scoping

in R is dynamic and can be modified at the language level

(and these modifications can be triggered as a side-effect of

a function execution), it cannot be trivially guaranteed that

x is going to point to the same data structure throughout the

entire execution of the loop. Finally, the function implement-

ing the subset operator is generic, so that a specific func-

tion to execute is chosen at runtime based on the existence

and content of the vector’s attributes. These attributes, which

are meta-data that can be associated with any data structure,

can change freely, and the chosen function can be arbitrarily

complex (see Section 5.3.1 for additional details).

This paper will demonstrate that using aggressive specu-

lation techniques, as well as the right tool chain (described in

the following section), it is possible to remove many of the

R language’s runtime overheads and improve on the current

state-of-the-art.

3. Truffle Overview

Truffle [27] is a framework for implementing language run-

times in Java utilizing JVM services (e.g., memory manage-

ment). Its API provides many useful building blocks for cre-

ating a language runtime, for example:

• base node classes for building an Abstract Syntax Tree

(AST) interpreter

• a domain specific language (Truffle DSL) that helps

building specialized node classes and simplifies construc-

tion of general-purpose inline caches

• support for efficient management of variable scopes

(called frames)

• source code management and interfaces for tools like

debuggers

In a Truffle-based interpreter, the ASTs that represent a

program will start out in an uninitialized state and specialize

according to the actual behavior at runtime. This means that

the trees only contain implementations of operations for data

types that have been encountered at runtime. For example, if

up to a certain point the ”+” operation was only executed

with integer arguments, and is then executed on floating-

point values, the framework will rewrite the operation in the

tree to a more generic implementation that can handle both

cases. As long as language developers are careful to provide

5 The special syntax is syntactic sugar that is removed by the parser.
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progressively more generic operation implementations, the

tree will stabilize eventually.

Truffle also provides assumptions, which can be used to

guard important system-wide conditions. They start out in

the “valid” state and can be invalidated explicitly if a con-

dition they are guarding is about to be broken. The main

property of assumptions is that checking them is very cheap

(potentially free under certain circumstances), while invali-

dating them is a very expensive operation. This can be used

to speculate on conditions that are very likely to be true, but

which cannot be statically proven so. As long as the number

of failing assumptions is small, the tradeoff between cheap

checking and expensive invalidation is beneficial.

Truffle can be enhanced by employing a just-in-time com-

piler called Graal [27]. Graal can take the ASTs produced

by a Truffle language and compile them to efficient machine

code. It does so via partial evaluation, also called the Second

Futamura Projection [7]. The important property of this pro-

cess is that it generates a compiler from the interpreter, so

that language implementations on top of Truffle do not need

a separate custom-built compiler.

Compilation to native code happens only after the AST

stabilizes and so called “hot paths”, that is portions of the

application code that are executed most frequently, have

been identified in the course of interpreted execution. This

compilation strategy makes language implementations using

Truffle and Graal particularly well suited for executing long-

running applications, which aligns well with FastR’s focus

on peak performance (as opposed to startup performance).

Truffle provides an additional mechanism to language de-

velopers, so called profiles. They allow for passing addi-

tional information to the compiler to help it generate high-

performance native code, at a small additional cost to the

interpreted code. Numerous different types of profiles exist,

with the most important ones being condition profiles and

type profiles. Condition profiles are used to remember con-

ditional branches that were never taken (to help the compiler

generate more concise code). Type profiles remember dy-

namic type information and help in call devirtualization.

Another integral part of achieving high performance is

Graal’s ability to deoptimize and recompile native code.

Even if the execution stabilizes on a certain set of discovered

types and valid assumptions, it cannot be guaranteed that in

the future no new types are introduced and no assumptions

are violated. If the framework detects such situation, native

code can be invalidated with the execution falling back to the

interpreter, and recompiled after execution stabilizes again.

4. FastR Overview

FastR is an open source6 implementation of R in Java on

top of the Truffle framework. As with all Truffle-based lan-

guage implementations, it is at heart an AST interpreter that

specializes the tree at runtime. It reuses code from GNU R

6 https://github.com/graalvm/fastr

where appropriate, either translated into Java or called as C

or Fortran code through the R native interface.

The goal of FastR is to be a complete and fully GNU R

compatible implementation of the R language, including

development tools such as the standard debugger support, as

well as support for third-party R packages available in public

repositories. Since third-party packages are such a big part

of the R ecosystem, it is crucial for FastR to be able to install

and load these in exactly the same way as GNU R from the

user’s perspective. Installing non-trivial packages exercises

most of R’s sophisticated language features, so that FastR

had to reach a significant level of compatibility with GNU R

in order to be able to do so.

Performance-wise, the main focus of FastR is to acceler-

ate execution of the R code. Currently, a typical work flow

for complex long-running R applications is to prototype an

algorithm in R and then identify and re-write performance-

critical portions of R code in C/C++. This is time consum-

ing, error-prone, and difficult to test for correctness (e.g.,

due to differences in how languages handle floating point

computations), and will hopefully become unnecessary with

projects like FastR providing more efficient execution of R

code. Nevertheless, since many packages include code writ-

ten in C/C++ or Fortran, FastR must implement the interface

for calling to and receiving callbacks from such code. Unfor-

tunately the native interface is very complex – it exposes the

internals of the GNU R implementation and assumes that an

implementation is in C/C++ and can freely share memory.

This is problematic for a Java implementation as Java has

very strict rules on the use of data outside the JVM as estab-

lished by its Java Native Interface (JNI).

At the time of writing, FastR implements all the major

features of the R language, including but not limited to sup-

porting all user-facing R data structures, lazy evaluation, and

both S3 and S4 object models. The main remaining missing

features are full graphics support as well as selected builtin

functions and parts of the native interface. Nevertheless,

FastR is complete to the point that it can correctly install over

2000 of the CRAN packages as well as run (in parallel) un-

modified selected production applications. The FastR code

base also includes approximately 10,000 unit tests which

compare individual operations against the GNU R reference

implementation. Some of the tests were written by hand and

some were generated automatically by the testR [23] project.

To summarize, since FastR implements the majority of

important language constructs, its semantic compatibility

with GNU R is high, but more work is required on complete-

ness as, for example, many R applications rely on packages

with native components that FastR does not yet support.

5. R Language Optimizations

Implementing the R programming language is a challeng-

ing task for VM and runtime engineers. It includes many

programming language features and paradigms that were as-
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sembled with little concern for efficient and compiled exe-

cution. In this section we show how, despite R’s complex-

ity, the majority of language performance problems can be

mitigated via aggressive speculation, where the runtime sys-

tem optimizes an executing program based on a certain set

of predictions (e.g., that the number of different argument

types for a give function call is small), but is also prepared

to handle the general case, even if not as efficiently. In FastR

we distinguish three major different speculation techniques:

Inline Caches In dynamic languages it is often hard or im-

possible to determine the target of a specific call at com-

pile time, so that every call is in principle polymorphic.

In general, the number of call targets is unbound, but we

can speculate that the number of targets encountered at

runtime is small, and that they can be cached to avoid

expensive lookups and call preparation.

Inline caches, though typically associated with function

or method call optimizations, do not have to be restricted

to call sites – they are a generic concept that can be

applied in all places where the number of options is

unbound in theory, but in practice only a small set of

concrete options will appear at any one place.

The so-called guards, used to determine whether a spe-

cific inline cache entry applies in the current situation,

are not restricted to simple equality or type checks. How-

ever, all inline caches use guards whose runtime cost is

negligible compared to the actual operation they are used

for.

Assumptions Inexpensive assumptions (see also Section 3)

can be used to speculate that certain system-wide con-

ditions which need to be checked frequently will hold

throughout a program’s execution.

The underlying system tries to make checking assump-

tions as fast as possible, while invalidating an assumption

may be an expensive operation.

The use of assumptions needs to be carefully designed so

that the overall system stabilizes to a state where no more

invalidations occur.

Specialization Specialization refers to the principle of di-

viding the implementation of an operation into smaller

pieces intended to handle specific cases, and speculating

that only a limited set of code paths will be explored dur-

ing program execution, which can greatly simplify the

work of an optimizing runtime and compiler. A common

use of this is type specialization, with one code path for

each data types, but an implementation may also special-

ize (and have separate code paths) for positive or negative

values, values below or above a certain threshold, etc.

These fundamental techniques permeate the entire imple-

mentation of FastR, starting with symbol lookup, through

lazy evaluation, to other performance-critical implementa-

tion components such as function calls and vector accesses.

5.1 Symbol Lookup

The seemingly simple task of looking up a symbol repre-

senting a variable or function name is a complex operation

in R, due to the way the lookup scopes are chained as user-

accessible and user-modifiable first-class objects.

A mapping between symbols and their values in R is rep-

resented by an environment. If a symbol is not found in

an environment, lookup continues automatically in the en-

closing environment. Certain environments are pre-defined

at startup, for example the base environment containing def-

initions of builtin functions and system variables, or the

global environment representing the outermost scope for

user-defined variables and functions. A linked list of (enclos-

ing) environments starts at the global environment, contin-

ues with package environments containing symbols defined

by currently loaded packages, and ends at the base environ-

ment. This list of environments is called the search path,

and all lookups for basic operations like <- (assignment) or

length (builtin function returning length of an R data struc-

ture) will search through all of them before finding the target

function in the base environment.

New environments are created upon each function call to

create a scope for the function’s local variables. The function

environment gets its enclosing environment from the func-

tion’s enclosing environment. A function’s enclosing envi-

ronment is initially taken from the point where the function

was created (this can be an outer function environment, or

the global environment at the top level), but it can be modi-

fied freely.

The main difference between R and other superficially

similar languages, such as Java or JavaScript, is that envi-

ronments can be explicitly added and removed to and from

the search path, for example by loading or unloading R pack-

ages. Furthermore, R programmers can create new environ-

ments and use the builtin functions attach and detach to

manipulate the search path. Modification to variables in most

cases only modify the current environment, but R also pro-

vides variable access capabilities that can reach out to the

outer scope(s), for example, the super assignment operator

<<- that assigns in the enclosing scope. The combination of

all these features makes symbol lookup very dynamic and

difficult to optimize – a naı̈ve implementation would per-

form a full lookup each time irrespective of whether the sym-

bol binding or the search path has changed or not.

FastR uses Truffle facilities so that the actual contents

of the environment (frame at the Truffle level) and the set

of names that may be available in an environment (called

frame descriptor and consisting of frame slots) are separate

entities. A function, for example, creates a new environment

for each call, but the frame descriptor is shared by all these

environments. While new environments are created all the

time, only a limited number of frame descriptors is created,

and the set of names they may contain will stabilize over

time.
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Given that functions always use the same frame descrip-

tor, the mapping between a name of a local variable and the

actual position in the frame only needs to be determined the

first time the function is executed, and can be cached for sub-

sequent execution. The optimizing Truffle runtime can elide

allocating the function environment altogether in many cases

through escape analysis [20].

In order to accelerate R language’s symbol lookup pro-

cess while remaining faithful to its semantics, for non-local

lookups FastR creates Truffle assumptions for a number of

system-wide conditions:

• For a given frame descriptor, an assumption asserts that

there is only a single known environment using the frame

descriptor. Constructing a second environment with the

same layout will invalidate this assumption.

• For a given frame descriptor, an assumption asserts that

the frame descriptor of enclosing environments does not

change. For example, the frame descriptor of the environ-

ment of an inner function will always have as an enclos-

ing frame descriptor the frame descriptor of the environ-

ment of the outer function. While the actual environments

change, the frame descriptors and their relationships usu-

ally stay the same.

• For a given frame descriptor, an assumption asserts that

specific names are not available in this frame descriptor.

• For a given frame descriptor (which has a single, known

instance – see the first condition), frame slot-specific

assumptions assert that the symbol-to-value binding does

not change, that is, a given symbol always corresponds to

the same value.

Inserting new names into an environment, changing the nest-

ing of environments, or changing values inside environments

can potentially invalidate these assumptions. These are ei-

ther very infrequent operations, or the invalidation only hap-

pens the first time they are executed, so that overall the time

needed for invalidating assumptions is negligible.

Consider the following piece of R code that defines func-

tion f1 at the global scope and f2 as an inner function in

f1:

f1 <- function(x) {

f2 <- function(x) {

length(x)

}

f2(x)

}

f1(42)

Note that the result of the last statement in a function

is the return value of this function. When the call to f1 is

executed, it will in turn call f2 and return the length of

the parameter (in this case – 1). In order to find the actual

function that the symbol length is bound to in f2, FastR

will discover and check the following assumptions:

• length is not available in f2’s frame descriptor

• enclosing frame descriptor of f2 is f1

• length is not available in f1s frame descriptor.

• enclosing frame descriptor of f1 is the frame descriptor

of the global environment

• length is not available in the frame descriptor of the

global environment

• ... (these steps continue through the remainder of search

path until reaching the base environment)

• length is available, with a specific known value (the

length primitive) in the base environment

Almost all non-local lookups in R code can be satisfied

by only checking assumptions. The first time a lookup is

executed, FastR collects the set of assumptions needed to

guarantee that the lookup result remains valid. For subse-

quent executions, only the assumptions need to be checked,

which does not incur any runtime cost as soon as the code is

optimized.

If FastR detects that a symbol lookup is not stable and

cannot be fulfilled using assumptions, it will fall back to

doing the full lookup every time. This is a rare case in

practice.

5.2 Lazy Evaluation

R uses a call-by-need lazy argument evaluation strategy – a

promise (see Section 2), consisting of a code snippet and its

evaluation environment, is used to compute a concrete value

of an argument. The actual value of the promise is calculated

(forced) as late as possible and only if it is needed. A promise

is only forced once, and the computed value is cached within

the promise.

A straightforward implementation of call-by-need, such

as that of GNU R, is rather simple, but as other researchers [4]

observed, it is typically less efficient than eager argu-

ment evaluation strategies, such as call-by-value. Creating

promises and going through an additional level of indirec-

tion to acquire the actual value is a noticeable overhead, but

for optimizing runtimes the main problem is that every point

in the program that can potentially force a promise becomes

a call site that can execute arbitrary code.

There are two basic approaches of bringing the perfor-

mance of lazy evaluation closer to that of the eager ones but,

as we discuss in Section 7, they cannot be used with FastR.

They either use static analysis or rely on language features

to control side-effects, while FastR uses JIT compilation and

has largely uncontrolled, if infrequent, side effects.

The main idea underlying FastR’s approach to imple-

menting lazy evaluation is that not all promises are created

equal, and different promise categories require different op-

timization approaches.

5.2.1 Categorizing Promises

We distinguish the following promise categories:
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Eager promises represent arguments where a local variable

is used as a parameter:

x <- 17; foo(x)

Indirect (“promised”) promises represent arguments that

were not forced yet and are passed as parameters to

subsequent function calls:

bar <- function(x) { foo(x) }

Default (“complex”) promises represent all other promises,

which can contain arbitrary code that needs to be evalu-

ated to obtain the concrete argument value:

foo(x + bar(y))

Even though there are no systematic studies on what

kinds of promises dominate in R code, the authors’ expe-

rience working with R applications and standard libraries

suggests that even such a simple classification creates oppor-

tunities for improving lazy evaluation performance, and this

paper seeks to back up this hypothesis with the experimental

results.

5.2.2 Implementing Promises

Given that they provide the largest potential for optimiza-

tions, as the overhead related to these promises can be re-

moved almost completely, FastR focuses its efforts on ea-

ger promises. When FastR determines that the argument to

a function call is an eager promise, that is, it passes along a

local variable, it evaluates the local variable and stores the

value of the argument with an eager promise. While this

evaluation clearly has no side-effects, the eagerly evaluated

value is correct at the point when the promise is forced only

if the input variable involved in the argument value compu-

tation has not changed in the meantime (e.g., through use

of the <<- super assignment operator). The eager value also

cannot be trusted any more if functions that hand out ref-

erences to the environment, like environment(), are used.

We monitor these invariants by associating a Truffle assump-

tion with each eager promise – if an input variable changes

or the environment escapes, the assumption is invalidated,

thus invalidating the pre-computed value. In this rare case,

the value must be re-computed from the complete promise.

Whenever we need to actually evaluate an eager promise,

we need its evaluation environment. Since storing the ac-

tual environment in eager promises would break many opti-

mizations (e.g., Truffle frames can no longer be “virtualized”

and turned into native stack frames), and thus make eager

promises less efficient, FastR stores a marker that can be

used to locate (by traversing the execution frame stack) the

correct environment. If the eager promise assumption holds,

the performance of eager promises is close to call-by-value,

because all that is needed is a small amount of additional

context for each parameter. On the other hand, on the slow

path (after re-computation is triggered), evaluation of eager

promises degenerates to that of default promises, and the call

site that originally generated the eager promise is instructed

to generate default promises.

The implementation of default promises is straightfor-

ward and conceptually similar to that of GNU R. A default

promise contains a Truffle node representing the argument

expression along with the associated (caller) environment. In

this case FastR pays the cost associated with passing along

the environment, but it can still accelerate the actual compu-

tation of the value at the point where the promise is forced.

FastR creates inline caches for points in the code that repeat-

edly evaluate promises with similar expressions. This allows

the optimizing Truffle runtime to incorporate the code for

the specific expressions, thereby exposing more opportuni-

ties for further optimizations.

Indirect promises, while technically being an instance of

eager promises (in that their creation does not involve any

expensive operations, such as passing along the environ-

ment), in reality are simply wrappers around default and ea-

ger promises and their evaluation performance is that of the

promise they are wrapping.

5.3 Function and Method Calls

From a certain point of view, R is a functional language in

that functions in R are first-class citizens of the language

– they can be stored in variables, passed as arguments, re-

turned from other functions, etc. As described in Section 2,

many language constructs that in other languages are purely

syntactical (e.g., curly braces enclosing a code block), are

expressed as function calls in R. Fortunately, since functions

are stored in variables, function lookup proceeds similarly to

the “generic” symbol lookup described in Section 5.1, with

the difference beeing that non-function data structures are

skipped during lookup. Consequently, if neither the variable

storing the function nor the search path changes, the function

definition to be used at a given call site remains constant.

The function calling procedure is non-trivial as not only

there are many different function types but also R uses a

complicated algorithm for matching function parameters to

its arguments. Therefore we specialize function calling pro-

cedure based on the type of function being called and utilize

caching of argument signatures 7 to accelerate the argument

matching procedure.

R language function types include “regular” functions

implemented in R, builtin functions implemented in the host

language of the R language implementation, and native func-

tions implemented externally in one of the “native” lan-

guages (Fortran, C or C++). Different function types are

called differently, and the code handling their invocations is

carefully tailored to handle different cases. For example, in-

vocations of native functions and of most of the builtin func-

7 As opposed to the static notion of function signature, we use the term

argument signature to describe a dynamic ordered list of arguments used

for a given function invocation.
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tions require their arguments to be evaluated (i.e., promises

representing arguments to be forced), and certain types of

builtin functions use a different simplified version of the ar-

gument matching algorithm.

This is additionally complicated by the fact that, in ad-

dition to being functional, R is also object-oriented, with

the most popular object model, that is S3, being tightly inte-

grated with the function execution machinery 8.

5.3.1 S3 Object Model

As mentioned in Section 2, any R data structure, for exam-

ple a vector, can have a list of attributes, that is name-value

pairs, associated with it. S3 method dispatch is based on the

content of one such attribute, called class. To illustrate how

method dispatch interleaves with regular function invoca-

tions, consider the following example, where we first create

a one-element vector and then define a “regular” function

returning the content of this vector increased by 10:

v<-structure (42)

f<-function(x) { x + 10 }

Unsurprisingly, calling f on vector v, f(v) results in gen-

erating the value 52. However, after we redefine f to be a

generic function:

f<-function(x) { UseMethod(’f’) }

we can create a vector with a single class attribute and

an S3 method (which is, for all intents and purposes, also

an R function) that will be chosen by the runtime (via the

UseMethod builtin) to execute if its argument has the same

class attribute as the method’s suffix (after the dot):

v<-structure (42, class=’foo’)

f.foo <-function(x) { x - 10 }

In this case, the same invocation uses the generic function,

calls the defined method, and generates the value 32. This is

called generic dispatch, and not only “regular” R functions

can serve as generic functions, but also builtin functions,

for example those representing vector access and arithmetic

operations. This category of builtins implicitly performs a

dispatch largely similar to UseMethod.

R also supports group generic dispatch, where program-

mers can define methods that will be executed for groups of

(builtin) functions instead of for just a single function as in

the example above. The function groups are predefined (e.g.,

functions representing arithmetic operators) and can be use-

ful when defining operations for custom data structures.

When the UseMethod builtin function is called, or a prim-

itive operation with generic dispatch is encountered, FastR

needs to perform S3 lookup. If the argument does not have

a class attribute, then in most cases no additional action is

8 Another object model available in R, that is S4, is a much later and less

tightly integrated addition. Even though we implement it in FastR, we will

not discuss it further as its performance is considered less critical to the

point of some companies discouraging its use in their code [8].

necessary, and function located via symbol lookup (often by

analyzing assumptions only) can be used directly. In case

a class attribute was found, the lookup progresses along a

well-defined sequence of function names that need to be

considered. For example, if the + operation is executed with

arguments of class foo, then +.foo (generic dispatch) and

Ops.foo (group generic dispatch since + belongs to the Ops

group) need to be looked up, and only if none of these func-

tions exists, the actual primitive operation will be executed.

FastR builds an inline cache based on the classes that

were seen before, so that the list of function names to be

looked up can be precomputed. The lookups themselves can

usually all be fulfilled using assumptions, so that the S3

dispatch can subsequently be executed very quickly.

5.3.2 Argument Matching

The argument matching algorithm in R is unusually compli-

cated - it involves positional arguments, named arguments

(with partial name matching), default arguments, and vari-

adic arguments. The algorithm, which creates a plan for re-

ordering the arguments from the argument signature at the

call site to the formal signature of the target function, con-

sists of four phases:

• Match named arguments that have an exact match in the

formal signature.

• Match named arguments with a partial (but unambigu-

ous) match in the formal signature.

• Fill the remaining formal arguments with the remaining

actual arguments (positional matches).

• Put all remaining arguments into the variadic argument

(expressed by ...) if present.

For example, considering the following function definition

(..1 and ..2 retrieve first and second argument from the

list of variadic arguments):

f<-function(a, b, carg , ..., d=6) {

list(a, b, carg , ..1, ..2, d)

}

The function invocation f(b=2, 1, c=3, 4, 5) will re-

sult in a list consisting of consecutive numbers between 1

and 6: b and carg arguments are matched first (with c being

a partial, but unambiguous, match), followed by value 1 be-

ing matched to the first unmatched argument a, then values

4 and 5 are matched to the variadic argument, and finally the

default value is used for argument d.

In GNU R, the argument matching algorithm is run for

every function invocation. FastR optimizes argument match-

ing in several ways. Argument signatures, which consist of

an ordered list of argument names, are interned in a global

data structure, so that comparing for equality of signatures is

simply an identity comparison between signature objects. In

places where FastR performs the argument matching algo-

rithm, it also creates an inline cache of argument and for-

mal signatures. If a subsequent function invocations uses
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the same signatures, the same argument permutation can be

reused. An inline cache size of four elements is enough to

elide falling back to the complex matching logic in all but an

insignificant number of cases.

5.4 Vector Accesses

R’s main data types are vectors, there are no scalar numeric

data types, that is, even the number 42 is a 1-element nu-

meric vector. In order to make these vector data types as

useful as possible, vector access operations are very pow-

erful and support many different filtering and selection use

cases. Elements of a vector can be extracted and replaced

using dynamic single and multi-dimensional (for accesses

to matrices and multi-dimensional arrays) indexes. Indexes

can consist of multiple (for multi-element accesses) logical

values, positive or negative integer values, or string values.

Vector accesses are very common in R, which is why FastR

goes to great lengths to optimize these operations using in-

line caching and specialization.

As a first level of optimization we split the operation

using an inline cache for patterns that are usually stable for

a particular vector access operation. For example, consider

the following two-dimensional target vector (i.e., a matrix)

vec with named columns and rows:

col1 col2

row1 1 3

row2 2 4

and the following two-dimensional value vector val:

col1 col2

row1 7 42

In order to replace both values of the target vector in “row1”

with the content of the value vector, we would use the

vec["row1", 1:2] <- val replacement operation.

For these kinds of vector replace operation, we cache for

each combination of:

• type of the target vector (in this case – double)

• number of dimensions of the value vector (in this case –

2)

• types of values used for indexing (in this case – String

for the first index and double for the second)

• type of the value vector (in this case – double)

• type of the replacement operation (R uses two different

replacement operators, with slightly different semantics:

[<- and [[<-)

Please note that the example is only one of many differ-

ent vector access variants, and in order to make the code for

all these combinations maintainable, we develop these op-

erations against a set of generic interfaces. By injecting a

concrete type from the inline cache, the Truffle partial eval-

uator is able to remove all expensive interface calls reliably

in the optimized code.

The guards for the vector inline cache are based on how

vector accesses are used in R, so that most vector operations

have just a single entry in the inline cache (see Section 6.4

for detailed numbers). However, in cases where the opera-

tion is extremely polymorphic, changing types and dimen-

sions continuously, we fall back to using the least recently

used (LRU) caching strategy. The LRU cache does not be-

come stable, so the operation will run in a more generic and

less efficient mode in such cases.

FastR tries to keep the code for vector access operations

as small as possible at runtime, by hiding expensive pieces

of functionality behind small and efficient checks. If one of

these checks fails, FastR will deoptimize and recompile to

accommodate the new situation, but will not insert a new

line into the inline cache. For example, FastR speculates on

the vector length to always be constant if the vector length

is below a certain threshold 9. This exposes additional opti-

mization opportunities, for example unrolling loops iterating

over the content of a vector. If FastR encounters multiple tar-

get vector length values or values which are greater than the

threshold, it assumes a dynamic value for the target vector

length. We found the following list of aggressive specializa-

tions beneficial for the vector replace operation:

• target vector is not shared and can be reused

• constant length of target, index and value vectors if below

a certain threshold

• constant number of positions selected if below or equal a

certain threshold

• dimension indices contain NA (“not available”) values

• has only positive or only negative vector indices

• has no zero vector indices

• for string based indexing: string indices mapped to the

same integer indices

• has not seen any error condition (e.g., out of bounds)

In addition, many special checks are needed in order to

provide exactly the same behavior as GNU R in corner cases.

While these corner cases might seem unimportant, they are

exercised by existing R code, and can lead to hard-to-debug

problems if ignored.

6. Experimental Results

In our performance evaluation we demonstrate the effects

of our lazy evaluation optimizations in Section 6.3. We also

pitch FastR against the current state-of-the-art – in Section

6.5 we compare the following R implementations and con-

figurations:

• GNU R “base” – a default configuration of GNU R using

AST interpretation

9 Currently the threshold is experimentally set to 4
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Figure 1. Promise statistics
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Figure 2. Impact of lazy evaluation optimizations

• GNU R “BC” – a configuration of GNU R using byte-

code interpreter

• Renjin [3] – alternative implementation of R executing

R programs on top of a JVM

• TERR (TIBCO Enterprise Runtime for R) [22] – alter-

native implementation of R language runtime in C/C++

• FastR

The reason for choosing Renjin and TERR for our per-

formance comparison, is that they are the most complete

“production-ready” non-GNU R-based alternative R imple-

mentations, with all three platforms (including FastR) offer-

ing a similar level or R language semantics compatibility.

6.1 Benchmarks

To the best of our knowledge, no official R benchmark suite

exists and, additionally, many existing R applications rely

on packages with native components that FastR cannot yet

load and run. We then follow the route taken by other re-

searchers [11] that used shootout [6] and b25 [24] bench-

mark suites, and also modified the latter so that it aggregates

final computation results10. The shootout suite benchmarks

are R implementations of problems created for Computer

Language Benchmarks Game [6] and consist of small appli-

cations (such as binary tree manipulation or n-body simula-

tion – see benchmark description [6] for details), consisting

10 Otherwise, due to lazy evaluation, actual computation may be skipped.

mostly of R code and stressing different aspects of the lan-

guage implementation. The b25 benchmark suite is divided

into 3 subgroups consisting of 5 benchmarks each. The first

two (matcal and matfunc) involve matrix calculations and

spend majority of time in builtin functions and in native code

and are, as such, not particularly interesting from the per-

spective of improving performance of R code. We include

the performance numbers for these two groups merely to in-

dicate that they perform similarly in FastR and GNU R, even

though the FastR implementation in some cases involves

crossing the Java-to-native boundary. The last b25 bench-

mark subgroup (prog) represents simple R computation tasks

(such as matrix transposition or finding grand common divi-

sors – see the benchmark description [24] for details).

In the plots, we abbreviate the names of the shootout

benchmarks as follows: bt (binary-trees), fn (fannkuch-

redux), fa (fasta), fr (fasta-redux), kn (k-nucleotide), ma

(mandelbrot), nb (n-body), pd (pidigits), rd (regex-dna),

rc (reverse-complement), and sn (spectral-norm). For b25

benchmarks we use mc for matcal, mf for matfunc and pr

for prog subgroups.

6.2 Configuration

The machine we used for running our experiments is an Intel

Xeon with 24 2.70GHz E5-2697 v2 CPU cores (Ivy Bridge)

between two sockets, featuring 264G for RAM and running

Oracle Linux Server 6.5 (a derivative of Red Hat Enterprise

Linux Server 6.5), with Linux kernel version 2.6.32. Please
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note that while the machine is parallel, both R language and

benchmarks in both our suites are inherently sequential, and

the benefits of parallel architecture can only be observed if

the language implementation supports implicit parallelism.

Currently only Renjin claims existence of such support, with

both GNU R and FastR focusing on sequential performance.

All benchmarks, except for the runs used to gather statis-

tics, are executed within a common harness, with each

benchmark application being executed in a separate pro-

cess. For each benchmark application, the harness executes a

certain number of “warmup” iterations followed by a “mea-

surement” run. The intention here is to present the peak-

performance numbers since FastR is targeting long-running

applications where warmup-time effects (such as compila-

tion cost) are negligible when compared to total execution

time. For all performance runs (Figure 2, Figure 3, and Fig-

ure 4) we ran each benchmark five times and plot an aver-

age over all runs with 95% confidence intervals. Since the

amount of jitter was small, and since all these figures are

plotted on a logarithmic scale, confidence intervals are only

really visible in Figure 2. We use GNU R version 3.2.4, a

version of FastR compatible with GNU R 3.2.4, Renjin ver-

sion 0.8.2050, and TERR version 4.1.1. We use jdk1.8.0 60

for FastR and Renjin executions. We evaluate different R

implementations in their default configurations, much like

those that would be most likely used by end users, with the

only exception being setting 6G max heap size for Renjin

and FastR runs. We did, however, also ran a configuration

where GNU R, TERR, and FastR use the same version of

native LAPACK and BLAS libraries 11 and the results were

virtually the same as with the default configuration runs.

6.3 Lazy Evaluation Optimizations

Lazy evaluation overheads are meaningful with respect to

the total execution time of an application only if said ap-

plication creates a significant number of promises that need

to be maintained and evaluated. In particular, applications

that spent most of the time in native code and/or execut-

ing builtin functions, such as those that belong b25’s matcal

and matfunc benchmark groups, are unlikely to suffer from

lazy evaluation performance problems and, consequently,

benefit from lazy evaluation optimizations. In order to es-

timate optimization potential, we ran each benchmark only

once, measured the number of promises created throughout

its execution, and normalized this number with respect to

the benchmark’s execution time. As we can see in Figure 1,

the b25’s matcal (mc) and matfunc (mf) benchmark groups

indeed provide almost no opportunity for performance im-

provement. Consequently, we report lazy evaluation opti-

mization numbers only for the shootout benchmarks and the

prog category of the b25 benchmarks.

In Figure 2 we present speedup of different promise op-

timization configurations over the unoptimized case plotted

11 Despite our best efforts we could not make Renjin use the native libraries.

on a log scale (values greater than 1 indicate speedups and

smaller than 1 indicate slowdowns). The right-most bar (EA-

GER & CACHE) represent the impact of both inline caching

and of utilizing eager promises. We observe only few minor

slowdowns resulting from applying the optimizations, with

speedups over the unoptimized implementation reaching

over ∼8x and average performance doubled (with geometric

mean at over ∼1.6x). The left-most (EAGER ONLY) bar rep-

resents a configuration that only enables eager promises and

the middle bar (CACHE ONLY) represents a configuration

that only enables inline caching – their analysis indicates that

one size does not fit all. Sometimes the benefit of caching is

more pronounced, as evidenced by shootout’s k-nucleotide

(kn) benchmark, and sometimes it is eager promises that

provide majority of the speedup, as demonstrated by the

execution times of shootout’s binary-trees bt benchmark.

6.4 Vector Access Inline Cache

For our vector access optimizations to be effective we rely

on inline caches to remain stable. Therefore we counted the

number of inline cache entries for replace and extract op-

erations for the b25 and shootout benchmarks. In total we

found 96 replace operations and 1182 extract operations. 74

(∼77%) of the replace and 1127 (∼95%) of the extract op-

erations required only a single entry in the inline cache. We

counted two entries for 16 (∼17%) replace and 43(∼4%) ex-

tract operations, three entries for two (∼2%) replace and 6

(∼0.5%) extract operations and four entries for two (∼2%)

replace and three (∼0.3%) extract operations. The main ob-

servation here is that when running the benchmarks, the in-

line cache has never overflowed (in fact, the fifth and last

entry in the cache was unused for all operations), and none

of the operations used in the benchmarks required the run-

time to fall back to the LRU caching technique.

6.5 FastR vs the World

While understanding the impact of specific optimizations

can be very useful, the real test of our system is its perfor-

mance against the current state-of-the-art. Before we pro-

ceed to describing the performance numbers, it is important

to re-iterate that the current main goal of FastR project is to

accelerate execution of R code – in particular, we defer fur-

ther research on improving performance of native code to re-

lated work. In Figure 3 and Figure 4 we demonstrate speedup

of GNU R’s bytecode interpreter, Renjin, TERR and FastR,

over “base” GNU R, and plotted on a log scale (again, values

greater than 1 indicate speedups and smaller than 1 indicate

slowdowns). As we can see, GNU R’s bytecode interpreter

brings modest performance gains, with ∼1.7 average (∼1.5

geomean) speedup over “base” GNU R for shootout bench-

marks and ∼1.2 average (∼1.1 geomean) speedup for b25

benchmarks. Performance of Renjin is unstable, with signif-

icant speedups for some benchmarks, such as b25’s prog-1

(pr1) and prog-2 (pr2) benchmarks in Figure 4), but also

dramatic slowdowns, such as for b25’s prog-4 (pr2) bench-
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Figure 3. Performance numbers for shootout benchmark suite
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Figure 4. Performance numbers for b25 benchmark suite

mark in Figure 4. Renjin is also unable to run some bench-

marks: shootout’s regex-dna (rd) benchmark and 3 out of 5

b25’s matfunc (mf) benchmarks. Overall, Renjin performs

worse than “base” GNU R on shootout benchmarks (∼0.6

average score with ∼0.4 geomean) and its average speedup

on b25 benchmarks is ∼3.3 (geomean – ∼1.3). Judging

from results of b25 benchmark executions, TERR appears

to be the main competitor of FastR in terms of performance,

with TERR’s ∼20.1x average speedup (geomean at ∼7.0)

and FastR’s average speedup of ∼15.7x (and geomean at

∼2.4). What works in TERR’s favor here are b25’s mat-

cal (mc) and matfunc (mf) benchmarks that contain mostly

calls to builtin and native functions. TERR, as we suspect

(it is closed source), utilizes heavily optimized custom im-

plementations of builtins used by b25’s matcal and matfunc

benchmarks (e.g., matrix) and it clearly currently has ad-

vantage over FastR in terms of crossing the native bound-

ary. However, when considering the remaining benchmarks,

not only does FastR perform better then TERR on aver-

age, but on shootout benchmarks TERR exhibits slowdowns

with respect to “base” GNU R (∼0.7 average and ∼0.6 ge-

omean). At the same time, FastR suffers no significant slow-

downs, and some of its performance gains are considerable

reaching into thousands times speedup over “base” GNU R.

The outliers clearly inflate FastR’s average performance gain

(∼208.7x speedup on shootout and ∼15.7x speedup on b25

benchmarks), but even geometric means across the board

(∼30.8x and ∼2.4 speedups, respectively) are arguably im-

pressive considering that we support full R language seman-

tics with all its idiosyncrasies.

In terms of larger R programs, our focus so far was

on the internal production applications which we cannot

describe and evaluate in detail at the moment, but which

FastR executes up to 3x faster than GNU R.

7. Related Work

In addition to FastR, Oracle Labs is developing Truffle-based

implementations for JavaScript and Ruby [27]. Truffle-based

implementations of Python [26] and SOM [14], a Smalltalk-

like language, have been developed by third-parties.

There are several alternate implementations of R in ad-

dition to FastR. TERR [22] is a closed source clean-room

implementation of R (in C/C++) aimed at enterprise-grade

applications. Renjin [3] is a JVM-based interpreter for R,

and follows the path taken by several other languages, for

example JRuby [10], in targeting the JVM bytecode inter-

face. However, it is challenging to map semantics of lan-

guages that significantly differ from Java to the JVM byte-

code interface, as noted by the JRuby project which is now

experimenting successfully with a Truffle-based solution.

In addition to “pure” GNU R, a few derivatives of this

project exist. One example is CXXR [19] – an effort started

in 2008 to clean up the implementation by refactoring it into

C++. After lying dormant for several years CXXR has re-

cently been picked up by Google and renamed rho [15],

with a focus on improving memory management and per-
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formance using LLVM [12]. pqR [16] (‘pretty quick R‘) is

another GNU R variant that tries to improve on performance

by various interpreter modifications. The last category of

alternative R implementations are research prototypes that

implement only a portion of the full R language semantics.

These include Purdue-FastR [17], a fast simplified R inter-

preter, and Riposte [21], an experimental R implementation

that focuses on optimizing vector access operations.

Other frameworks aim to provide similar benefits to Truf-

fle/Graal, the most notable being RPython [1], a statically

typed subset of Python that uses trace-based JIT compila-

tion to eliminate most of the interpreter overhead. RPython

has been used to implement Python and and other dynamic

languages, for example JavaScript and Ruby.

There is also a large body of work on optimizing perfor-

mance of lazy evaluations. Arguably the most relevant work

(in particular, approaches relying on static analysis [5, 25]

are ill-suited for FastR), was done in Haskell and attempts

to bridge the gap between lazy evaluation and eager evalua-

tion by optimistically trying eager evaluation [4, 13]. These

approaches involve complicated and often expensive meth-

ods of restarting computations upon eager computation fail-

ure, but their main drawback from FastR’s perspective is that

they rely on language mechanisms to control side-effects.

8. Conclusions

The R language, with its rich set of features and highly dy-

namic nature, presents unique challenges to language de-

velopers, and few traditional compiler techniques can be

applied if compatibility with the complete set of dynamic

language features is needed. In this paper, we showed how

FastR uses the concepts of inline caching, assumptions and

specialization extensively to extract the stability needed for

efficient execution of such a dynamic language. Experimen-

tal results show that FastR greatly benefits from this – it can

accelerate R code execution by orders of magnitude while

keeping the original language semantics.
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