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Abstract. Transactional memory (TM) promises to simplify construc-
tion of parallel applications by allowing programmers to reason about
interactions between concurrently executing code fragments in terms of
high-level properties they should possess. However, all currently existing
TM systems deliver on this promise only partially by disallowing par-
allel execution of computations performed inside transactions. This pa-
per fills in that gap by introducing NePaLTM (Nested PAralleLism for
Transactional Memory), the first TM system supporting nested paral-
lelism inside transactions. We describe a programming model where TM
constructs (atomic blocks) are integrated with OpenMP constructs en-
abling nested parallelism. We also discuss the design and implementation
of a working prototype where atomic blocks can be used for concurrency
control at an arbitrary level of nested parallelism. Finally, we present a
performance evaluation of our system by comparing transactions-based
concurrency control mechanism for nested parallel computations with a
mechanism already provided by OpenMP based on mutual exclusion.

1 Introduction

As the microprocessor industry transitions to multithreaded and multicore chips,
programmers must use multiple threads to obtain the full performance of the
underlying platform [24]. Transactional memory (TM), first proposed by Herlihy
and Moss [13], has recently regained interest in both industry and academia [9–
11, 18, 19] as a mechanism that seeks to simplify multithreaded programming by
removing the need for explicit locks. Instead, a programmer can declare a section
of code atomic which the TM system executes as a transaction; its operations
execute atomically (i.e. all or nothing) and in isolation with respect to operations
executed inside other transactions. While transactions appear to execute in some
sequential order, their actual execution may overlap increasing the degree of
available parallelism.



However as the number of processors increases, by Amdahl’s law [3], the single
transaction may become the sequential bottleneck hindering speedup achieved
via parallelism. Transactional nested parallelism, that is the ability to use multi-
ple threads inside a transaction, proves to be useful in removing this bottleneck.
For example, resizing of a concurrent data structure constitutes a relatively long-
lasting and heavyweight operation which nevertheless must be executed trans-
actionally to prevent interference with other transactions concurrently accessing
the same data structure. By parallelizing the resize operation within a transac-
tion, we can still guarantee non-interference but without letting the sequential
resize operation adversely affect overall performance.

Transactions are also meant to compose better than locks. Programmers
should be able to integrate arbitrary library code into their own concurrent ap-
plications without fear of deadlock or unpredictable performance loss, regardless
of how concurrency is managed inside the library. The existing TM systems de-
liver on this composability promise only partially as they do not support nested
parallelism inside transactions and thus transactional code cannot take advan-
tage of efficient parallel implementations of common algorithms, even if they are
readily available in a packaged library form.

At the same time, dynamic (implicit) multithreading provided by languages
such as Cilk [23] or libraries such as OpenMP [22] is becoming a widely used
and efficient method of introducing parallelism into applications. An application
programmer expresses the parallelism by identifying elements that can safely
execute in parallel, and letting the runtime system decide dynamically how to
distribute work among threads. Most of the systems supporting dynamic multi-
threading is based on the fork-join concurrency model which is simple to reason
with and yet has great expressive power. For example, an important class of
problems can be solved using the divide-and-conquer technique which maps well
to the fork-join model: a problem is broken into sub-problems, and then these
sub-problems can be solved independently by multiple threads whose partial
computation results are ultimately combined into a complete problem solution.
The parallel computation of the sub-problems can often proceed with little or
no internal synchronization.

Despite the growing significance of dynamic multithreading, only few re-
searchers have previously explored issues related to integration of TM constructs
into the fork-join concurrency model. In particular, Agrawal et al. describe a
high-level design for supporting nested parallelism inside transactions in the
context of Cilk [2]. However, similarly to the first published design of a sys-
tem supporting transactional nested parallelism (in a context of persistent pro-
gramming languages) by Wing et al. [28], they provide neither implementation
nor performance evaluation of their design. Integration of TM constructs into
OpenMP has been explored by Baek et al. [4] and Milovanović et al. [16] but
neither of these solutions allows nested parallelism inside transactions.

Our paper makes the following contributions:

1. We describe a programming model for a system where OpenMP’s constructs
enabling nested parallelism can be nested inside TM constructs used for



concurrency control (atomic blocks) (Section 3). Our programming model
defines an execution model which is a logical extension of an existing trans-
actional execution model to the case of nested parallelism.

2. We describe the design (Section 4) and implementation (Section 5) of the first
TM system, NePaLTM (Nested PAralleLism for Transactional Memory),
where atomic blocks can be used for concurrency control at an arbitrary level
of nested parallelism. We discuss in detail extensions and modifications to
the existing TM mechanisms required to support atomic blocks in presence
of nested parallelism.

3. We evaluate performance of our system by comparing transactions-based
concurrency control mechanism for nested parallel computations with a mech-
anism already provided by OpenMP based on mutual exclusion, and demon-
strate that the performance of the former is in many cases superior to the
latter. (Section 6).

2 Background

Before diving into details of our programming model and describing NePaLTM’s
design and implementation, we would like to provide some relevant background
information on both TM-style concurrency control and OpenMP-style fork-join
programming model.

2.1 C/C++ Software Transactional Memory

Intel’s Software Transactional Memory (STM) system, extending C/C++ with a
set of TM constructs, forms our base TM system [19]. The tm atomic statement
is used to define an atomic block which executes as a transaction; its operations
execute atomically (i.e. all or nothing) and in isolation with respect to operations
executed inside other transactions. The tm abort statement (user abort) allows
a programmer to explicitly abort an atomic block. This statement can only
appear in the lexical scope of an atomic block. When a user abort is triggered,
the TM system rolls back all side effects of the atomic block and transfers control
to the statement immediately following the block.

The TM system provides SLA (Single Lock Atomicity) [14] semantics; atomic
blocks behave as if they were protected by a single global lock. This guarantees
that programs that are race free under a single global lock will execute correctly
when executed transactionally. Providing no guarantees for programs containing
data races1 is consistent with the emerging C/C++ memory model specification
[7]. We next give an overview of the base system’s structure [19].

The base system performs updates in-place with strict two-phase locking for
writes, and supports both optimistic and pessimistic concurrency control for
reads. The system keeps a descriptor structure per transaction which encapsu-
lates the transaction’s context (i.e. meta-data such as transactional logs). The
1 A data race occurs when multiple threads access the same piece of memory, and at

least one of those accesses is a write.



system also keeps a table of transaction records called the ownership table. Every
memory address is hashed to a unique transaction record in this table but mul-
tiple addresses may be hashed to the same record. A transaction record contains
information used by the concurrency control algorithm to control access to mem-
ory addresses mapped to this record. When a transaction record is write-locked,
it contains information about the single lock owner. When a transaction record
is read-locked, it contains information about all transactions holding read-locks
for a given location. Additionally, when a transaction record is not write-locked,
it contains a version timestamp used by optimistic readers as explained below.

Transactional memory accesses are performed through three types of transac-
tional barriers: write, optimistic read and pessimistic read barriers. On a trans-
actional store, the write barrier tries to exclusively write-lock the transaction
record. If the record is locked by another transaction, the runtime resolves the
conflict before continuing, which may abort the current transaction. If it is un-
locked, the barrier write-locks the record, records the old value and the address
in its undo log, adds the record to its write log (which keeps the transaction’s
write set), and then updates the memory location. On a transactional load, the
optimistic read barrier checks if the transaction record is locked, but does not try
to lock it. In contrast, the pessimistic read barrier tries to read-lock it. In both
cases, if the record is write-locked by another transaction, the conflict is handled.
If it is unlocked or read-locked, both optimistic and pessimistic read barriers re-
turn the value of the location and add the record to the read log (which keeps
the read set). The optimistic read barrier also records the transaction record’s
timestamp, used to keep track of when the memory location is being updated.

On commit, an optimistic transaction uses the recorded timestamps to vali-
date that no transaction record in its read set has been updated after the trans-
action read them. If validation succeeds, the transaction unlocks all transaction
records in its write set; otherwise it aborts. A pessimistic transaction does not
need to validate its read set but does need to unlock all transaction records in
both its read and write set. On abort, in addition to all locks being released, the
old values recorded in the undo log are written back to the corresponding ad-
dresses. On both commit and abort, the runtime modifies the timestamps of the
updated locations – subsequent timestamp values are obtained by incrementing
a global counter.

To provide SLA semantics correctly, the runtime guarantees several impor-
tant safety properties, namely granular safety, privatization safety and observ-
able consistency [15]. For granular safety, the runtime records transactional data
accesses into the undo log at an appropriate granularity level – when accessing N
(= 1, 2, 4 or 8) bytes of data, the runtime must be careful to record and restore
only these N bytes without affecting memory adjacent to the location where the
data is stored. Privatization safety and observable consistency are an issue only
with optimistic transactions. Privatization [21] is a common programming idiom
where a thread privatizes a shared object inside a critical section, then continues
accessing the object outside the critical section. Privatization, if not supported
correctly, can cause incorrect behavior in the following way: a committing priva-



tizer may implicitly abort a conflicting optimistic transaction due to an update
resulting from its privatization action, and subsequent non-transactional code
may read locations that were speculatively modified by the conflicting transac-
tion, which has yet to abort and roll back. The system provides privatization
safety through a quiescence algorithm [26]. Under this algorithm a committing
transaction waits until all other optimistic transactions verify that their read set
does not overlap with the committing transaction’s write set. Observable consis-
tency guarantees that a transaction observes side effects only if it is based upon a
consistent view of memory. In other words, a transactional operation (a read or a
write) is valid in the sense of observable consistency if it is executed under some
consistent memory snapshot, even if that operation needs to be subsequently
undone. The runtime provides this by having each transaction validate its read
set before accessing any location written by a transaction that has committed
since the previous validation of the read set.

2.2 OpenMP API

The OpenMP API is a collection of compiler directives, runtime library routines,
and environment variables that can be used to explicitly control shared-memory
parallelism in C/C++ [22]. We next give an overview of the features of version
2.5 of the OpenMP specification [5] which are relevant to this work. At the point
of writing this paper we had no access to an implementation supporting the new
features available in version 3.0 [6] such as OpenMP tasks so we defer exploration
of these new features to future work.

Parallel regions OpenMP’s fundamental construct for specifying parallel com-
putation is the parallel pragma. OpenMP uses the fork-join model of parallel
execution. An OpenMP program begins as a single thread of execution, called
the initial thread. When a thread encounters the parallel pragma, it creates
a thread team that consists of itself and zero or more additional threads, and
becomes the master of the new team. Then each thread of the team executes
the parallel region specified by this pragma. Upon exiting the parallel construct,
all the threads in the team join the master at an implicit barrier, after which
only the master thread continues execution. The parallel pragma supports two
types of variables within the parallel region: shared and private. Variables de-
fault to shared which means shared among all threads in a parallel region. A
private variable has a separate copy for every thread.

Work-sharing All of a team’s threads replicate the execution of the same code
unless a work-sharing directive is specified within the parallel region. The speci-
fication defines constructs for both iterative (for) and non-iterative (sections,
single) code patterns. The for pragma may be used to distribute iterations of a
for loop among a team’s threads. The sections pragma specifies a work-sharing
construct that contains a set of structured blocks defined using the section
pragma that are to be divided among and executed by the threads in a team.



Each structured block is executed once by one of the threads in the team. The
single pragma specifies that the associated code block is executed by only one
thread in the team. The rest of the threads in the team do not execute the block
but wait at an implicit barrier at the end of the single construct unless a no
wait clause is specified.

Synchronization Synchronization constructs control how the execution of each
thread proceeds relative to other team threads. The atomic pragma is used to
guarantee that a specific memory location is updated atomically. A more general
synchronization mechanism is provided by the critical pragma used to specify
a block of code called a critical region. A critical region may be associated
with a name, and all anonymous critical regions are assumed to have the same
unspecified name. Only one thread at a time is allowed to execute any of the
critical regions with the same name. In addition to the implicit barriers required
by the OpenMP specification at certain points (such as the end of a parallel
region), OpenMP provides the barrier pragma which can be used to introduce
explicit barriers at the point the pragma appears; team threads cannot proceed
beyond the barrier until all of the team’s members arrive at the barrier. The
specification does not allow nesting of barrier pragma inside a critical region.

3 Programming model

The programming model we present in this section allows atomic blocks to bene-
fit from OpenMP and vice versa. Transactions can use OpenMP’s parallel regions
to reduce their completion time and OpenMP can use transactions to synchronize
access to shared data. We chose OpenMP because of its industry-wide accep-
tance as a method for programming shared memory, as well as because of the
simplicity and expressive power of the fork-join execution model that OpenMP is
based on. However, nothing prevents transactional nested parallelism to be sup-
ported in an alternative setting, exemplified by systems using explicit threading
models.

3.1 Constructs

Our programming model adds TM’s atomic block construct to the existing,
more traditional, synchronization constructs specified by OpenMP (e.g. critical
regions). Simultaneous use of these constructs is legal as long as they are used to
synchronize accesses to disjoint sets of data. Previous work, exploring composi-
tion of the traditional synchronization constructs with atomic blocks, has shown
that such composition is non-trivial [25, 27, 29], and, as such, is beyond the scope
of this paper. Our programming model also supports OpenMP’s barrier pragma
for declaring synchronization barriers, but like the original OpenMP specifica-
tion which does not allow the use of this pragma inside critical regions, we do
not allow its use inside atomic blocks.



1 : __tm_atomic {
2 :  #parallel sections {
3 :   #section
4 :    { ... }
6 :   #section
7 :    #parallel sections {
8 :     #section 
9 :      { ... }
10:     #section 
11:      { ... }
12: }}}

T1
__tm_atomic {
 #parallel sections {
  #section
    __tm_atomic {...}
  #section
    __tm_atomic {...}
}}      

T2

// T1-1

// T1-2

// T2-1

// T2-2

// T1-2-1

// T1-2-2

(a) Code

T1

T2-2

Fork team

T2

Thread control flow

Atomic block

T2-1

T1-2-2T1-2-1

T1-2T1-1

(b) Control flow tree

Fig. 1. Shallow (T1) and deep (T2) nesting

An atomic block is orthogonal to an OpenMP’s parallel region. Thus an
atomic block may be nested inside a parallel region and vice versa. When an
atomic block is nested inside a parallel region, each dynamic instance of the
atomic block is executed by a single thread of that region. In the opposite case
when a parallel region is nested inside an atomic block, a team of threads is cre-
ated and all the threads execute under the same atomic block on behalf of the
same transaction. We refer to the transitive closure of the threads created under
the same atomic block as atomic thread team (or atomic team for short). When a
user abort is triggered by a member of an atomic team using the tm abort con-
struct, all the team’s threads abort their computation and the entire transaction
aborts.

An atomic block is also orthogonal to OpenMP work sharing constructs,
with only one exception. While an atomic block can be nested inside a single
construct, the opposite is not true. Recall from Section 2.2 that all team threads
but the one executing the single region wait at an implicit barrier at the end of
the region. If a single pragma was allowed to be nested inside an atomic block
then it would be possible for the threads waiting at the barrier to transactionally
hold resources needed by the thread executing the single region resulting in a
deadlock. To prevent such a case, we disallow single from being nested inside
of an atomic block. Note that this is not different from the original OpenMP
specification which prevents nesting of a single pragma inside a critical region.

Before moving on with the description of the execution model, we need to
introduce some more terminology. We call a thread that begins an outermost
atomic block a root thread. We reason about the hierarchy between threads in
terms of a parent-child relation; a thread spawning some threads becomes the
parent of these threads (and the ancestor of these and all other transitively
created threads), the spawned threads become its children and one another’s
siblings. Conceptually, execution of the parent thread is suspended at the spawn
point and resumed when all children complete their execution. The transactional
parent of a child thread is its ancestor thread that created an atomic block
immediately enclosing the point of the child thread’s creation. Atomic blocks
form a nesting hierarchy. We refer to the atomic block of a root thread as a root



atomic block, and to an atomic block created by a nested thread as a parallel-
nested atomic block. When the threads spawned under a root atomic block do
not use any additional atomic blocks, we have shallow nesting. If however these
threads do use additional atomic blocks then we have deep nesting. For example,
Figure 1 2 illustrates the control flow tree for a given code block. Threads T1
and T2 are root threads. Thread T1 is the parent of thread T1-2 and T1-2 is the
parent of T1-2-2. T1 is both the ancestor and the transactional parent of T1-2
and T1-2-2. The atomic blocks created by threads T1 and T2 are root atomic
blocks while the atomic blocks created by threads T2-1 and T2-2 are parallel-
nested atomic blocks. Threads T1-1, T1-2, T1-2-1, T1-2-2 are part of the same
atomic team. Finally, the tree with root T1 represents a case of shallow nesting
and the tree with root T2 represents a case of deep nesting.

3.2 Execution Model

Recall from section 2.1 that our base TM model provides the SLA (Single Lock
Atomicity) semantics for race free programs; atomic blocks behave as if they
were protected by a single global abstract 3 lock. However in the presence of
nested parallelism this model is insufficient. To see why, consider again Figure 1;
if a single abstract lock was used by all atomic blocks, then threads T2-1 and
T2-2 would block-wait for their parent, thread T2, to release the abstract lock
protecting its atomic block resulting in a deadlock.

Our programming model logically extends the SLA execution model into the
HLA (Hierarchical Lock Atomicity) model to account for nested parallelism. Like
SLA, HLA defines semantics for race free programs. HLA is similar to the model
used by Moore and Grossman in their formal definition of small-step operational
semantics for transactions [17]. In HLA, abstract locks protecting atomic blocks
form a hierarchy; a “fresh” abstract lock is used whenever a child thread starts
a new atomic block, and it is used for synchronizing data accesses between this
thread and threads that have the same transactional parent. Note how in the
case of shallow nesting HLA degrades to SLA; only a single abstract lock is
required to maintain concurrency control between all atomic blocks.

HLA semantics differs from the semantics of OpenMP’s critical regions in
that critical regions with the same name are not re-entrant. This implies that if
we hierarchically nest critical regions in the same fashion as atomic blocks, we
end up with a non-recoverable deadlock.

To better understand HLA consider the example given in Figure 2 which
extends the example in Figure 1. In contrast to the previous example, threads
T1-2-1 and T1-2-2 create new atomic blocks which are nested under the atomic
block of thread T1. Let’s first consider how abstract locks are assigned to the
atomic blocks according to HLA. The root atomic blocks of threads T1 and T2

2 For readability we abbreviate OpenMP pragmas in all figures by omitting the initial
pragma omp.

3 We call this and other locks abstract because locks do not have to be used to enforce
a semantics, even if this semantics is expressed in terms of locks.



1 : __tm_atomic {
2 :  #parallel sections {
3 :   #section
4 :    { q++; }
6 :   #section
7 :    #parallel sections {
8 :     #section
9 :      __tm_atomic
10:      { x++;
11:        y++; 
12:        q++;}
13:     #section 
14:      __tm_atomic
15:      { w++;
16:        y++; }
17: }}}

T1
__tm_atomic {
 #parallel sections {
  #section
    __tm_atomic
     { x++;
       z++;}
  #section
    __tm_atomic 
     { w++;
       z++;}
}}      

T2

// T1-1

// T1-2

// T2-1

// T2-2// T1-2-1

// T1-2-2

(a) Code

T1

T2-2

Fork team

HLA abstract lock

T2

AL-2

Thread control flow

Atomic block

T2-1

AL

T1-2-2T1-2-1

T1-2T1-1

AL-1

(b) Control flow tree

Fig. 2. HLA Example

are assigned abstract lock AL, atomic blocks of threads T1-2-1 and T1-2-2 are
assigned lock AL-1, and atomic blocks of threads T2-1 and T2-2 are assigned
lock AL-2. Too see how these abstract locks are used to synchronize data accesses
consider the accesses of threads T2-1 and T2-2. Accesses to x and w by T2-1
and T2-2 respectively are isolated from the accesses of T1-2-1 and T1-2-2 using
lock AL. Accesses to z by T2-1 and T2-2 are isolated from each other using lock
AL-2. Similarly, accesses to y by T1-2-1 and T1-2-2 are isolated from each other
using lock AL-1. Finally consider the accesses to q by threads T1-1 and T1-2-1.
Since the two threads do not synchronize their accesses to q through the same
lock, these accesses are not correctly synchronized and therefore they are racy.

4 Design

The HLA semantics can be supported through two different types of concur-
rency mechanisms: transactions and mutual exclusion locks. Our design choice
is to use transactions for concurrency control between root atomic blocks and
mutual exclusion locks for parallel-nested atomic blocks. This choice is moti-
vated by the following three observations. First, it has been demonstrated that
transactions scale competitively to locks or better [1, 11, 12, 19]. Thus our system
offers root atomic blocks that can execute efficiently as transactions and which
can use transactional nested parallelism to further accelerate their execution in
case shallow nesting is used. Second, by supporting deep nesting through locks,
our system provides composability, which is a very important property for the
adoption of the model. Third, while we considered supporting parallel-nested
atomic blocks using transactions, previous work by Agrawal et al. [2] has shown
that such a design is complex and its efficient implementation appears to be
questionable. As we discuss at the end of this section, our personal experience
on the subject is very similar.



__tm_atomic {
 x = 7;
 #parallel sections
 { 
   #section
    { x = 42; }
   #section
    { x = 0;  }
 }
}

x=42 x=0

x=7

T1-2T1-1

// T1-1

// T1-2

T1

(a)

y=7
__tm_atomic { 
 x = y = 7;       
 #parallel sections 
 { 
   #section
    { x = 42; }       
   #section
    { y = 0; }        
 }
 #parallel sections 
 { 
   #section
    { x = 0; }        
   #section
    { y = 42; }       
 }
}

x =42 y=0

x=7

x =0 y=42

T1-2T 1 -1

T 1 -3 T1 -4

// T1-1

// T1-2

// T1-3

// T1-4

T1

(b)

Fig. 3. Examples of transactional logs in the presence of shallow nesting. Arrows depict
ordering constraints.

4.1 Shallow Nesting

In the case of shallow nesting no transactional synchronization is enforced be-
tween the members of an atomic team. Nevertheless, because operations of all
the team members are executed on behalf of a single transaction, they must
appear to be executed as a single atomic unit and in isolation from other con-
current root transactions. To achieve this, atomic team members inherit the
transactional context of their transactional parent and perform all transactional
operations using that context. Having multiple threads working on behalf of a
single transaction has several important implications on how the runtime man-
ages transactional logs and how it guarantees transactional safety properties.
Below we describe these implications in detail:

Logging Recall that there are three types of logs associated with a transactional
context: read, write, and undo log. The read and write logs track transaction’s
read and write sets, respectively, and the undo log keeps the old values of the
locations written by the transaction. Conceptually members of an atomic team
and their parent share the same log, so a simple solution would be to have
threads use a single log instance and synchronize access to that log. However
this would require excessive synchronization making this solution impractical.
Instead of using a single log and paying the cost of synchronizing log accesses,
we leverage several properties described below so as to allow each atomic team
member to maintain its own private instances of transactional logs.

Write log A transaction’s write log is used to release write locks when the trans-
action completes. Because locks can be released in any order, they can be freely
distributed between multiple logs. A potential problem of using multiple logs
is double-releasing a write lock if the same lock appears in more than one log.



However, since children acquire locks on behalf of their parent, at most one child
will find the lock not held and bring it into its log.

Read log In the pessimistic case, a transaction’s read log is used to release read
locks, and therefore the correctness reasoning is the same as in the write log
above. In the optimistic case, the read log is used for validation, but the ordering
with which validation is done is not important either. Moreover, since no locks
are released, the read log can tolerate multiple entries per location.

Undo log In contrast to read and write logs, ordering of undo log entries matters
because side effects must be rolled back in the opposite order to that in which
they happened. While undo entries do not need to be totally ordered, undo en-
tries for the same memory location must be partially ordered. There are two
cases of writes to the same memory location that we need to consider. First,
simultaneous writes by multiple threads of the same atomic team may generate
multiple undo entries. Since these writes constitute a race, and according to our
programming model racy programs have undefined behavior, their undo entries
need not be ordered. Figure 3(a) shows an example where two threads of the
same atomic team both write x; ordering of the undo entries is not important
because the writes are racy. In the second case, writes of a memory location
by threads in different atomic teams may also generate multiple undo entries.
However, if the writes are performed in different parallel regions executed one
after the other then they are ordered and therefore they are not racy. For ex-
ample in Figure 3(b) writes to x and y by threads T1-1, T1-3 and T1-2, T1-4
respectively are partially ordered. In order for undo entries distributed between
multiple logs to be recorded correctly, atomic team members merge their logs
with that of their parent at join points, and the parent records the ordering.

Safety Properties NePaLTM must guarantee the three safety properties dis-
cussed in Section 2, namely granular safety, privatization safety, and observable
consistency. For granular safety no additional support is necessary because gran-
ular safety depends only on undo logging granularity which is not affected by
having multiple threads working on behalf of a single transaction. However, hav-
ing multiple threads does have implications on the mechanisms used to provide
observable consistency and privatization safety. For observable consistency, chil-
dren must not only validate their private read sets but they must also validate
the read set of their (suspended) parent. This is because their computations
depend on their parent’s computation and therefore they must have a view of
memory which is consistent with that of their parent. For privatization safety,
a committing transaction waits separately for the atomic team members to val-
idate and become stable rather than waiting for validation of the root thread’s
transaction as a whole which can only happen after execution of all the team
members is completed and could thus be sub-optimal.



x =42
x=0

x=7

T1-2T1-1

__tm_atomic {
 x = 7;
 #parallel sections
 {
  #section
   __tm_atomic 
   { x = 42; }
  #section
   __tm_atomic
   { x = 0;  }
 }
}

// T1-1

// T1-2

T1

(a)

__tm_atomic {
 x = 7;
 #parallel sections
 {
  #section
   { ... }
  #section
   x = 0;
   #parallel sections
   {
    #section
     { ... }
    #section 
     __tm_atomic 
     { x = 42; }
   }
}}

x =42

x=0

x=7

T1-2
// T1-1

// T1-2

// T1-2-1

// T1-2-2

T1-2-2

T1

(b)

Fig. 4. Examples transactional logs in the presence of deep nesting. Arrows depict
ordering constraints.

4.2 Deep Nesting

NePaLTM supports deeply nested atomic blocks using mutual exclusion locks. As
defined by the HLA semantics presented in Section 3.2, a fresh mutual exclusion
lock is allocated per atomic team and used for concurrency control between
atomic blocks created by the atomic team’s threads.

Despite using mutual exclusion for concurrency control in case of deep nest-
ing, all the code executed by deeply nested atomic blocks must be transaction-
alized, that is instrumented to support transactional execution. First, transac-
tional instrumentation of memory accesses is necessary to be able to roll back
side effects in case the atomic block needs to abort. Second, transactional concur-
rency control must still be used for synchronizing memory accesses performed
by threads inside a root atomic block with memory accesses done by threads
executing inside other root atomic blocks. We now present a discussion of how
deep nesting impacts logging and safety properties.

Logging In Section 4.1 we reasoned about the correctness of our design decision
to let children use private instances of transactional logs. Deep nesting, however,
adds the additional ordering constraint that logs must respect the order enforced
by parallel-nested atomic blocks. This is particularly important in the case of
undo logs since undo operations must be executed in order opposite to that of
transaction commits. A child committing an atomic block, in order to correctly
capture the commit order of this atomic block with respect to other atomic blocks
executed under the same parent, must merge its current private log with the log
of its transactional parent before releasing the mutual exclusion lock guarding
its atomic block. If “intermediate” threads have been forked between a child’s
transactional parent and the child itself then log merging must respect the order
implied by the fork operations in case these intermediate threads performed data



accesses on their own. To accomplish this a child must transitively merge logs
up the parent/child hierarchy until it reaches its transactional parent.

Figure 4 shows two examples of deeply nested transactional logs. In the
example presented in Figure 4(a), thread T1-2 commits its atomic block after
T1-1 does so. Log merging must respect the commit ordering of the two atomic
blocks as shown by the arrow connecting the two logs. In the example presented
in Figure 4(b), thread T1-2-2 commits a deeply nested atomic block with an
intermediate thread T1-2 forked between the time when thread T1-2-2 has been
created and the time when thread T1-2-2’s transactional parent T1 has started
its transaction. To capture the fork order shown by the arrows, T1-2-2’s log
must be first merged with T1-2’s log and then the resulted log must be merged
together with T1’s log.

Safety Properties Since parallel-nested atomic blocks use mutual-exclusion
locks to handle synchronization, no additional support is necessary to guarantee
the safety properties for these atomic blocks.

4.3 Discussion

We initially considered an alternative design where transactional concurrency
control is used at all nesting levels. However we eventually abandoned it in
favor of the one we described above for the reasons we discuss here. When
using transactions at all nesting levels, as described by Agrawal et al. [2], the
parent/child relation plays a very important role in ensuring correctness of data
access operations. Maintenance and querying of the structure representing this
relation is likely to significantly complicate the implementation and decrease its
efficiency. Moreover, supporting optimistic transactions further complicates the
algorithms used for guaranteeing privatization safety and observable consistency
between atomic blocks at all nesting levels.

5 Implementation

Our prototype implementation follows our design guidelines and supports HLA
via transactions for root atomic blocks and via mutual-exclusion locks for deeper
nesting levels. As a base for our implementation we used Intel’s STM runtime
library and Intel’s TM C/C++ compiler [19], as well as Intel’s implementation
of the OpenMP library supporting version 2.5 of the OpenMP specification.
Despite a somewhat simplified design for deep nesting, significant extensions
and modifications to the algorithms of the base TM runtime were required.
Additionally we needed to modify the compiler and the OpenMP runtime library
to correctly compile and execute OpenMP constructs that are nested inside
atomic blocks.

In the remainder of this section we describe the data structures used in
NePaLTM as well as the mechanisms that implement concurrency control in
the presence of nested parallelism, with emphasis on the implementation of the



abort procedure and the transactional logs. We finally discuss the required mod-
ifications to the TM compiler to support nested parallelism.

5.1 Concurrency Control

Execution Modes and Descriptor We introduce two new execution modes
to the base TM system, namely omp optimistic and omp pessimistic which are
used by atomic team members working on behalf of an optimistic or pessimistic
transaction respectively. The base TM system supports multiple execution modes
through a layer of indirection similar to a vtable. Each execution mode defines
its own dispatch table of pointers to functions that implement the transactional
read/write barriers and transaction begin/commit/abort routines specific to that
mode. At runtime, the dispatch table of the current execution mode is used to
indirectly call that mode’s routines. This mechanism allows us to incrementally
pay the overheads associated with nested parallelism. A transaction always starts
at a base execution mode (e.g. optimistic) where it uses the original barrier
implementations. Then, when it spawns an atomic team, its children transition
into one of the two new execution modes where they use the nested-parallelism-
aware barriers and begin/commit/abort routines.

In NePaLTM, similarly to the base system, every thread in the system (both
root and child threads) is associated with a descriptor which is stored in the
thread’s local storage and encapsulates the thread’s transactional context. We
have extended the descriptor structure to keep some additional state related to
nested parallelism. In particular: information to reconstruct the parent/child hi-
erarchy such as pointers to the descriptor of the parent and the transactional par-
ent, state used by the recursive abort mechanism described later, and a mutual
exclusion lock for use by parallel-nested atomic blocks under this transaction.

To correctly switch execution mode and construct the parent/child hierarchy
we extended the OpenMP runtime library functions responsible for spawning
and collecting team threads with callbacks to the TM runtime.

Transactional Barriers We have implemented new transactional read and
write barriers for instrumenting memory accesses performed by team mem-
bers that run at one of the two new execution modes (omp optimistic and
omp pessimistic). Our new barriers are based on the original ones which we
have extended to support nested-parallelism.

On a transactional store, the write barrier executed by transactional thread
tries to exclusively lock the transaction record associated with the memory lo-
cation. If it is already locked by this thread’s root transaction then the thread
proceeds without acquiring the lock. However the barrier must still record the
old value and the address in its own private undo log4. If the record is locked
by another root transaction, the runtime resolves the conflict before continuing,
which may abort the current transaction. If the transaction record is unlocked
4 This is necessary because the ownership table is implemented as a hash table where

multiple memory locations may be hashed on the same transaction record.



then the barrier locks it using the current thread’s root transaction descriptor,
adds the record to its own private write log, records the old value and address
in its private undo log, and then updates the memory location.

On an optimistic transactional load, the optimistic read barrier checks if the
transaction record is already locked but does not try to lock it. If the record is
write-locked by another root transaction, the conflict is handled. If it is unlocked,
locked by the current thread’s root transaction or read-locked by another root
transaction, the barrier returns the value of the location, adds the record into
its read log and records the transaction record’s timestamp.

On a pessimistic transactional load, the pessimistic read barrier tries to read-
lock the transaction record. If the record is write-locked by another root trans-
action, the conflict is handled. If it is already read-locked or write-locked by the
current thread’s root transaction then the barrier returns the value of the loca-
tion without acquiring the lock. If it is unlocked or read-locked by another root
transaction then the barrier read-locks the transaction record using the current
thread’s root transaction descriptor, adds the lock into its own private read log,
and returns the value of the location

Observable Consistency and Privatization Safety For observable consis-
tency, a thread executing inside of an optimistic transaction validates the read
sets of all of its ancestors, up to and including the root transaction, in addition
to its own read set. As an optimization, when a thread validates the read set of
an ancestor, it updates the last validation timestamp of that ancestor so that
other threads with the same ancestor do not need to re-validate that read set.
For privatization safety, we modified the base quiescence algorithm so that a
parent thread temporarily removes itself from the list of in-flight transactions
until its child threads complete execution. By removing itself from that list,
other committing transactions do not have to wait for that thread. This is safe
because those other committing transactions will wait for that thread’s children
instead.

Transaction Commit and Abort Transaction begin, commit and abort pro-
cedures executed by atomic team members are also different than those executed
by root threads. Since deep nesting is implemented using locks, the routines do
not implement a full-fledged begin and commit. Instead they simply acquire and
release the mutual exclusion lock of the transactional parent at entry and exit
to a parallel-nested atomic block. Additionally, since parents must access trans-
actional logs of its children, as described in Section 4, children must pass their
logs to their parents at commit. The implementation details of this procedure
are described in Section 5.2.

NePaLTM supports a recursive abort mechanism, which can be used by any
active thread in the parent/child hierarchy to trigger an abort of the whole com-
putation executing under a transaction. Our extension to the OpenMP library
implementing this mechanism keeps some additional state: a per atomic team
abort flag stored in the transactional descriptor of every parent, and internal



checkpoint of the stack/register context for each atomic team’s thread, taken
before the thread starts its computation. Please note that in the presence of
transactional nested parallelism it is no longer sufficient to record a checkpoint
only at transaction begin – restoration of a child thread’s state to the checkpoint
taken by the parent would be incorrect.

An atomic team member triggers an abort of the entire transaction by setting
its parent’s abort flag and then aborting its current computation. An atomic
team member detects abort requests by recursively checking the abort flag of
all of its ancestors up to the root thread. All these checks happen either in the
slow path of the transactional barriers or when a thread waits behind the lock
protecting a parallel-nested atomic block. When a team member detects an abort
request, it aborts its current computation by marking its state as completed and
then restoring its internal checkpoint. After restoring its checkpoint, the thread
appears to OpenMP as completed, and OpenMP can safely shutdown and recycle
that thread. When execution of all the child threads is completed, execution of
their parent thread is resumed. When the parent thread resumes, it checks for a
pending abort request; if the thread itself is a child then the abort is propagated
up the parent/child hierarchy.

We support aborts requested both implicitly through a TM conflict and ex-
plicitly through the tm abort statement (user-level abort). The abort flag car-
ries the reason for the abort giving priority to conflict aborts. The tm abort
statement in our system is required to be lexically scoped within an atomic block
and, when executed, it aborts this atomic block only. As a result, abort propa-
gation stops upon reaching the atomic block lexically enclosing the tm abort
statement.

Admittedly, there exist alternative implementations of the abort mechanism,
but we believe that our implementation achieves a good balance between effi-
ciency and required modifications to an already complex and carefully tuned
OpenMP runtime library.

5.2 Transactional Logs

As explained in the design section, each child thread uses private transactional
logs and whenever ordering information needs to be captured, a child merges
its private log together with the log of its parent. We have implemented log
merging using a hybrid algorithm that combines two methods: concatenation and
copy-back. Whenever we need to merge two logs together, our hybrid algorithm
calculates the log size of the source log to be merged. If the log size is above
what we call a concatenation threshold, the log is concatenated; otherwise, the
log is copied-back. We next describe concatenation and copy-back separately.

Concatenation In this method, a transactional log is composed of several log
fragments linked together to form a list. Similarly to logs in the base TM system,
log fragments keep pointers to potentially multiple log buffers. A source log is
merged with a target log by connecting the log fragment list of the former at



Fig. 5. Representation of the log as a list of log fragments.

the tail of the list of the latter. For example, in Figure 5, log fragment LF1
(log fragments are represented by empty grey rectangles) associated with the
root thread executing transaction t1 has all the log fragments that belong to its
children linked to it.

A log is split into log fragments only when necessary. Thus if nested par-
allelism is not used inside atomic blocks, a log is represented by a single log
fragment. However, when nested parallelism is used, we only utilize log frag-
ments at points where we need to establish correct log ordering as previously
described. There are two cases in which this may happen. First, in the case
when a child thread reaches its join point, its parent connects the log fragment
currently used by the child to its own list of log fragments. Then the child is
assigned a fresh log with a new buffer. A fresh log is necessary because the child
thread may be recycled by OpenMP and used by another parent. In Figure 5,
LF2 and LF3 represent log fragments passed from children to their parent at the
join point.

Second, in the case when a child commits a nested atomic block, it splits its
log and then connects the produced log fragment to the parent’s log fragment list.
If ancestor threads exist between the child and the root thread, the child splits
the log fragments of all ancestor threads and connects them recursively until
reaching the root thread. Since only one child can acquire an atomic team’s lock
at any given time, this child can safely access and modify logs of all its ancestors.
Returning to our example in Figure 5 (atomic blocks created by children are
represented by narrow rounded black rectangles), the child thread at the top of
the figure splits its log when committing its first atomic block (t1-1) to create
log fragment LF4. Then the child thread at the bottom of the figure splits when
committing its own atomic block (t1-2) to create log fragment LF5. Finally
the last log fragment, LF6, is created when the child thread at the top of the
figure commits its second atomic block (t1-3). In contrast to thread join where
we assign new buffers to children because they complete their execution, the
committing child is still active so it keeps using its assigned buffers continuing
from the last buffer entries used by its log fragments. As a result, a buffer can be
shared between multiple log fragments as in the case of log fragments LF4 and



LF6 in Figure 5 (log buffers are represented as solid grey rectangles). Naturally,
a transaction using a given log fragment may fill up a buffer initially associated
with this log fragment and attach a new buffer (e.g. log fragments LF1 and LF4
in Figure 5).

Copy-back In this method two transactional logs are merged together by simply
copying every single entry of the source log to the target log at appropriate
points, the same in fact as the points when the logs are concatenated as described
above. It is the parent that copies entries from the child’s log into its own when
the child has already reached the join point. It is the child that copies entries
from its own log to that of the parent whenever that child commits a nested
atomic block.

5.3 TM compiler

The most important compiler-related issue was to ensure that the code gener-
ated for OpenMP’s parallel region executed inside transactions is appropriately
transactionalized, as described in Section 4.2. The TM compiler automatically
transactionalizes function calls (direct and indirect) that are annotated with a
special tm callable attribute. However, OpenMP’s parallel region is specified as
a code block at the source level and packaged into a form of a function internally
by the compiler. As a result it could not be transactionalized automatically and
the compiler needed to be modified to do it explicitly. Also, certain OpenMP
functions are called as part of setting up the execution environment of a par-
allel region. The TM compiler had to be modified to treat these functions as
transactional intrinsics (similarly to calls to the TM runtime library) otherwise
they would be treated as non-transactional functions of unknown origin. For
safety reasons, a transaction encountering a call to a non-transactional function
transitions to the so called serial mode which allows only a single transaction
to execute in the system. Clearly this would defeat the purpose of introducing
nested parallelism in the first place.

6 Performance Evaluation

Our performance evaluation focuses on evaluating our design decisions of using
transactions at the outermost level and locks at the deep nested levels. Because
benchmarks exercising nested parallelism are not easily available, we evaluate
performance of our prototype implementation using an in-house implementation
of the multi-threaded OO7 benchmark [8]. This benchmark is highly configurable
so it allows us to study the behavior of our system under different scenarios.

We seek to answer the following two questions:

1. Can transactions retain their performance advantage over locks in presence
of nested parallelism?

2. How does performance of parallel-nested atomic blocks compare with per-
formance of the atomic blocks executing the same workloads sequentially?



6.1 Benchmark Description

OO7 is a highly configurable benchmark that has been previously used in several
TM-related studies [1, 27, 29]. The benchmark is also easy to port and modify,
which was an important factor since the previous TM-enabled version of this
benchmark was written in Java, was not OpenMP-enabled and did not support
nested parallelism.

The OO7 benchmark operates on a synthetic design database consisting of
a set of composite parts. Each composite part consists of a graph of atomic
parts. Composite parts are arranged in a multi-level assembly hierarchy, called
a module. Assemblies are divided into two classes: base assemblies (containing
composite parts) and complex assemblies (containing other assemblies).

The multi-threaded workload consists of multiple client threads running a set
of parameterized traversals composed of primitive operations. A traversal chooses
a single path through the assembly hierarchy and at the base assembly level
randomly chooses a fixed number of composite parts to visit. When the traversal
reaches the composite part, it has two choices: (a) it may access atomic parts
in the read-only mode; or, (b) it may swap certain scalar fields in each atomic
part visited. To foster some degree of interesting interleaving and contention,
the benchmark defines a parameter that allows additional work to be added to
read operations to increase the time spent performing traversals.

Unlike the previous implementations of the OO7 benchmark used for TM-
related studies, ours has been written in C++ and uses OpenMP pragmas for
thread creation and coordination. Similarly to these previous implementations,
while the structure of the design database used by the benchmark conforms to
the standard OO7 database specification, the database traversals differ from the
original OO7 traversals. In our implementation we allow placement of synchro-
nization constructs (either atomic blocks or mutual exclusion locks provided by
OpenMP) at various levels of the database hierarchy, and also allow multiple
composite parts to be visited during a single traversal rather than just one as in
the original specification. We introduce nested parallelism by allowing the work
of visiting multiple composite parts to be split among multiple worker threads.
Naturally, in order to remain compliant with the original workload executed
during benchmark traversals performing database updates, the worker threads
have to be synchronized using appropriate synchronization constructs (atomic
blocks or locks, depending on a specific configuration).

6.2 Setup

We performed our experiments on a 4 x six-core (24 CPUs total) Intel Xeon 7400
(Dunnington) machine and running Redhat Enterprise Edition 4 at 2.66GHz.

In our experiments with the OO7 benchmark, we compare configurations
where mutual exclusion locks (provided by OpenMP implementation) are used
for synchronization with configurations where transactional atomic blocks are
used for synchronization. We use the standard medium-size OO7 design database.
Each client thread performs 1000 traversals and visits 240 (so that it is divisible
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Fig. 6. Performance of transactions vs. locks – no nested parallelism

by 1, 3, 6, 12 and 24 threads) random composite parts at the base assembly level.
Since worker threads are created at the base assembly level, which represents
level 8 of the database hierarchy (where level is the module), synchronization
constructs must be placed at the same level to guard accesses to parts located
at the lower levels of the hierarchy.

We vary the following parameters of the OO7 benchmark to achieve good
coverage of possible nested parallel workloads:

– number of clients: 2, 4 and 8
– number of workers: between 1 and 24 (to complement number of clients up

to 24 total parallel threads)
– percentage of reads vs. writes: 80-20, 50-50 and 20-80
– synchronization level: 1 and 4 for the clients (to simulate coarse-grain and

medium-grain synchronization strategy) and 8 for the workers (to guarantee
correctness)

We have also experimentally established the value of the concatenation thresh-
old to be 224 log entries, based on the results obtained from a simple single-
threaded microbenchmark executing a sequence of memory accesses triggering a
series of log operations.
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6.3 Evaluation

When attempting to answer questions we have raised at the beginning of this
section, we report performance numbers for both optimistic and pessimistic con-
currency protocol as they exhibit different characteristics for a given workload,
which may or may not change upon introduction of nested parallelism.

Can transactions retain their performance advantage over locks in
presence of nested parallelism? Our hypothesis is that introduction of
nested parallelism into a TM system should not change the relative performance
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characteristics between transactions and locks, regardless of the type of concur-
rency protocol (optimistic or pessimistic) being used.

Figure 6 depicts the relative performance of transactions over locks for pes-
simistic and optimistic concurrency. In this and the rest of the performance
charts, unless noted otherwise, Y axis is speedup of transactions over locks (100%
speedup indicates that a transactional configuration was 2x faster) and X axis
represents the percentage of reads executed during OO7’s database traversals. As
we can see, this particular benchmark favors pessimistic protocols. Even though
both optimistic and pessimistic transactions perform better than coarse-grain
locks, only pessimistic transactions are competitive with medium-grain locks –
optimistic transactions can perform up to 50% worse. It is important to note
that this is a characteristic of a specific workload executed by OO7 benchmark.
Several studies [12, 19, 20] report that optimistic protocols may in fact perform
better than the pessimistic ones. It is therefore important to support both types
of protocols in a TM system.

In Figure 7 we plot results for configurations utilizing nested parallelism,
varying the number of worker threads and comparing the performance of trans-
actions over coarse-grain locks. The number of worker threads gets lower as we
increase the number of clients to sum up to 24 threads, which is equal to the
number of CPUs available on the machine we use for running all the experiments.

By comparing Figure 7 to Figure 6 we observe that transactional mem-
ory with support for nested parallelism preserves the performance benefits that
transactions provide over locks. While the parallel nested transactions do not
maintain the exact same relative performance difference with respect to a lock-
based solution, significant performance improvements can still be expected (up
to approximately 200% speedup) especially in cases when contention between
client threads is significant, as is the case even with just 4 or 8 client threads.
The same performance trend holds for configurations using medium-grain syn-
chronization style (we do not report numbers of medium-grain configurations
due to space constraints).



How does performance of parallel-nested atomic blocks compare with
performance of the atomic blocks executing the same workloads se-
quentially? Because of our decision to use locks for synchronization at deeper
nesting levels, our expectation is that introduction of transactional nested par-
allelism should provide the largest performance advantage over sequential exe-
cution of code inside transactions when nested parallel threads do not need to
be synchronized, that is in the case of shallow nesting. However, the only OO7
workload that can be safely executed without having worker threads synchro-
nized within the same transaction is the read only workload. Nevertheless, we
decided to present numbers for some selected configurations of this somewhat
trivial workload as they serve as an indication of the performance improvement
achievable by applications exercising shallow nesting. In Figure 8(a) we plot re-
sults for a single client executing a read-only workload, when varying the number
of worker threads between 1 and 24. The worker threads execute unsynchronized
but the client thread executes synchronization operation (at level 1), even though
it is not necessary for correctness, to account for the cost incurred by transac-
tional execution of the workload (i.e. transaction begin and commit and the cost
of read barriers). We report numbers for both optimistic and pessimistic trans-
actional modes, as well as for a configuration that uses an OpenMP’s mutual
exclusion lock to implement client’s synchronization operation and that does
not include any transactional overheads. Every data point in Figure 8(a) is nor-
malized with respect to the equivalent configuration (optimistic, pessimistic or
lock-based) that does not use nested parallelism and executes the entire workload
sequentially. As we can observe, in case of shallow nesting, nested parallelism
helps to improve performance of the workload over its sequential execution.
However, while it improves performance quite dramatically when increasing the
number of worker threads from 1 to 6, it remains constant or even degrades
slightly when further increasing the number of worker threads. We attribute this
effect to the cost of worker thread maintenance incurred by the OpenMP library
that starts playing a more important role as the amount of work executed by a
single worker thread gets smaller. This observation is indirectly confirmed by the
fact that the configurations using OpenMP locks exhibit similar characteristics.

The remaining question is then how sequential execution of transactional
code compares performance-wise with configurations exercising deep nesting. In
Figure 8(b) we plot results for a single client executing a workload where the
percentage of writes is equal to the percentage of reads 5 and where the worker
threads require synchronization in addition to synchronization operations exe-
cuted by the client. The numbers are normalized similarly to the numbers pre-
sented in Figure 8(a). As we can observe, in case of OO7 benchmark the perfor-
mance of parallel-nested transactional configurations is actually worse than that
of configurations executing transactional code sequentially. This result is not
surprising, considering that the majority of useful work in the OO7 benchmark
is performed by the worker threads. As a result, if the execution of these threads
is serialized then, especially after adding inherent overhead incurred by the STM

5 Configurations with other read-write percentages exhibit similar characteristics.



implementation, no performance improvement over the sequential configurations
should be expected. However, please note that lock-based parallel-nested config-
urations provide no performance benefit over their sequential counterpart either.

To summarize, our performance evaluation indicates that with nested paral-
lelism inside transactions enabled, performance of transaction-based concurrency
control mechanisms can still be better than of those based on mutual exclusion.
However the serialization imposed by the lock used to implement parallel-nested
atomic blocks might detrimentally affect performance of transactions exercising
deep nesting.

7 Conclusions

In this paper we have presented the design and implementation of the first
STM system supporting nested parallelism inside of transactions, along with a
programming model where OpenMP’s constructs enabling nested parallelism can
be nested inside of TM constructs used for concurrency control (atomic blocks).
We expect our system to benefit more applications that use nested parallelism
inside transactions with no or low synchronization between nested threads.
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