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ABSTRACT
Virtual machines for languages such as the Java program-
ming language make extensive use of online profiling and dy-
namic optimization to improve program performance. But
despite the important role that profiling plays in achiev-
ing high performance, current virtual machines discard a
program’s profile data at the end of execution, wasting the
opportunity to use past knowledge to improve future per-
formance.

In this paper, we present a fully automated architecture
for exploiting cross-run profile data in virtual machines. Our
work addresses a number of challenges that previously lim-
ited the practicality of such an approach.

We apply this architecture to address the problem of selec-
tive optimization, and describe our implementation in IBM’s
J9 Java virtual machine. Our results demonstrate substan-
tial performance improvements on a broad suite of Java pro-
grams, with the average performance ranging from 8.8% –
16.6% depending on the execution scenario.

Categories and Subject Descriptors
D.3.4 Processors [Programming Languages]: [Optimiza-
tion]

General Terms
Languages, Measurement, Performance

Keywords
Java, virtual machine, profiling, selective optimization

1. INTRODUCTION
Virtual machine technology has progressed significantly

over the last several years, largely due to the success of
the JavaTM programming language, and more recently the
C# language. The dynamic nature of these languages has
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spurred particular interest in the area of dynamic compila-
tion and adaptive optimization [1, 2, 5, 11, 14, 21]. Most of
the production Java Virtual Machines available today con-
tain advanced adaptive optimization systems that monitor
and optimize the program as it executes, and these systems
have a substantial impact on performance.

These systems use profiling information in multiple ways
to improve performance. First, they identify the frequently
executed parts of the program to determine where optimiza-
tion efforts should be focused. This process, referred to
as selective optimization, has been shown to be effective at
keeping compilation overhead to a minimum while produc-
ing efficiently executing code [1, 12, 21]. The second use of
online profiling is to perform feedback-directed optimization,
where profiling information is used to improve the quality
of generated code [3,11,18,21], giving them the potential to
outperform a static compilation model.

Despite the value of the dynamic information collected, it
is usually discarded at the end of the execution [1, 5, 11, 12,
14,21]; the VM learns nothing from previous runs, and pro-
filing is started from scratch when the program is executed
again. Capitalizing on this wasted opportunity seems like
an obvious next step in the evolution of adaptive optimiza-
tion systems. Exploiting offline profile data is certainly not
a new idea, and has existed for many years [18]. However,
technical challenges prevent the straightforward application
of these techniques in a fully automatic virtual machine.
For example, traditional offline profiling assumes a clear dis-
tinction between training runs, where profile data collected,
and production runs, where profile data is exploited. A VM
does not have the luxury of this distinction; every run is
both a production run and a training run, thus the VM
must be prepared to adapt to continuously changing profile
data. In addition, the VM now has two potential sources
of profile data: offline and online. The offline information
is potentially more complete, containing data from multiple
completed runs, yet the online information is possibly more
relevant because it is specific to the current run.

For long-running applications there is less motivation to
store information across runs, because their running time
is long relative to the time it takes the adaptive system to
characterize their performance. But for short and medium
length applications, the VM will likely exit before it was able
to fully exploit the profile data it collected, and will continue
to miss the same opportunities each time the application is
executed. In fact, there are many realistic scenarios where
this occurs. For example, in an edit-compile-debug cycle, a
program like the javac bytecode compiler may be executed
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repeatedly on the same set of (slightly changing) input files.
Similarly, when developing and debugging a J2EE server ap-
plication, it is sometimes necessary to shutdown and restart
the application server frequently. In both of these cases, op-
portunity is lost while the VM starts learning from scratch
at the beginning of each run.

In this paper, we describe an architecture for augmenting
a virtual machine with a profile repository, allowing the VM
to remember profile data and optimization decisions across
program executions. Our system is fully automatic; there
is no distinction between training and production runs, and
the user does not need to know that the repository exists.
Central to our approach is the ability to use a combination of
both online and offline profiling information together when
making optimization decisions at runtime.

The contributions of this paper include:

• We present an architecture for augmenting a VM with
a profile repository, allowing profile data to persist
across runs of an application. This architecture ad-
dresses many of the the challenges that previously lim-
ited the practicality of such an approach.

• We show how this architecture can be applied to the
specific problem of selective optimization.

• We describe our implementation and empirical evalua-
tion using IBM’s product J9 JVM. Our results demon-
strate substantial performance improvements on a
broad suite of Java programs.

The rest of the paper is organized as follows. Section 2
presents our general architecture and Section 3 describes
how it can be applied to selective optimization. Sections 4
and 5 describe our implementation and experimental results
respectively. Section 6 presents related work and Section 8
presents our conclusions.

2. SYSTEM ARCHITECTURE
Our architecture provides the virtual machine with the

ability to write to and read from a persistent repository,
thus giving it the ability to remember information across
application runs. This approach has a number of nice char-
acteristics.

• It enables the VM to exploit profiling information ear-
lier in the program’s execution, and enables feedback-
directed optimization over the life of the application,
rather than just a single execution.

• It is fully automatic, and requires no explicit training.

• The only demand on the VM’s environment is some
extra temporary disk space; it can be cleared or taken
away at any time, similar to a cache.

• The total disk space required is modest because infor-
mation is recorded only for frequently executed parts
of the program.

• Writing to and reading from the repository is optional;
if the repository becomes corrupted for some reason,
it can simply be ignored.

• No new security concerns are introduced because the
repository does not affect program correctness.

Figure 1: Profile repository architecture

However, this approach does present a number of funda-
mental challenges, such as:

1. How should the VM make decisions from aggregate
profile data that is continually changing? The adap-
tive system cannot scrutinize a full history of program
executions each time it needs to make an optimization
decision. Furthermore, the profile data may contradict
itself, with different executions demonstrating different
behavior.

2. How should the offline information in the persistent
repository be used together with the online informa-
tion that is collected at runtime? The offline reposi-
tory provides summary of previous runs, but the on-
line information provides up-to-date details about the
current execution.

In addition, there are infrastructure challenges that any
production implementation would need to address: reading
and writing to the repository must be efficient, otherwise
the time spent accessing the data could outweigh the bene-
fit. The repository must also be reasonably robust to allow
simultaneous access by multiple VM instances without be-
coming corrupted.

In the next subsections, we present our general architec-
ture for the repository and describe how it can be used to
address the above challenges.

2.1 Repository Architecture
Figure 1 presents our architecture for the profile reposi-

tory. It contains two separate components. The first com-
ponent, labeled raw profile data, is where the profile data
is aggregated and stored. Examples of possible raw profile
data include time spent in the various methods of the pro-
gram, dominant call targets at virtual call sites, and intra-
procedural control flow paths. Each time a VM contributes
back to the repository, its profile information is merged to-
gether with the existing raw data in the repository.

The second component of the repository is labeled pre-
computed online strategies. These strategies are short and
concise suggestions to the adaptive optimization system re-
garding the actions it should take at runtime. Examples of
online strategies include instructing the VM to optimize a
method earlier or later than usual, or to inline a particu-
lar call target at a virtual call site. These online strategies
can be read at VM startup, allowing the VM to exploit the
benefits of the persistent repository without needing to ana-
lyze, or even read, any of the raw profile data. Precomputed
online strategies are discussed further in Section 2.3.
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The goal of the profile analysis component in Figure 1 is
to decide how optimization should be performed based on
the raw data in the profile repository. The analysis can
be performed at any time, such as by an offline agent that
runs in the background. Our system performs this analysis
at runtime, while the JVM is shutting down, as described
later in Section 2.4.

None of the actions associated with the arrows in Figure 1
is required to be performed during an individual VM instan-
tiation. A VM can read and use the precomputed strategies
without later contributing back to the raw profile database;
similarly, it can contribute back to the raw profile info with-
out having read the precomputed strategies, or performing
the profile analysis.

2.2 Repository organization and association
Most virtual machines perform optimization at a method

granularity, so it is natural to store profiling data at a
method granularity as well. Previous work has suggested
attaching profiling information, or optimization directives,
to the Java bytecode as annotations [13]. However, we chose
not to modify the program source in any way because it
would violate our goal of being transparent to the user and
could risk corrupting the program source. Instead, we main-
tain a separate repository in temporary disk space reserved
for the virtual machine.

To maintain this repository, the VM needs the ability to
map information in the repository to the program being ex-
ecuted at runtime. This mapping is not entirely trivial be-
cause multiple programs may have classes or methods with
the same name and signature. In addition, some methods
(such as library methods) are shared by multiple programs.
In our design, we keep a separate entry in the repository for
each program, where a program is defined by the fully quali-
fied signature of the main() method that is executed to start
program execution; the location of the classfile on disk can
be added to avoid merging multiple programs whose main()

method share the same fully qualified class name.
For each program in the repository, information is

recorded for a subset of the methods in the program, namely
the hot methods that are executed frequently. If a particu-
lar method is executed by multiple programs, the method is
recorded separately for each program (assuming it was con-
sidered hot in both), allowing the analysis of the method to
be specialized in the context of each program.

2.3 Precomputed Online Strategies
In our architecture, the output of the profile analysis is

a precomputed online strategy. This precomputed strategy
is not a fixed optimization plan, such as “optimize method
M upon first invocation.” Instead, it is a list of conditional
optimization actions that tell the online system system what
to do based on what happens at runtime. For example:

if (runtime condition 1)

perform(optimization action 1);

if (runtime condition 2)

perform(optimization action 2); ...

This general structure provides power and flexibility re-
garding the solutions that can be constructed by the profile
analysis phase, allowing the analysis to construct plans that
exploit offline aggregate profile data together with the online
profile information collected during the current execution.

If a particular aspect of a profile was identical in all pre-
viously observed executions of a program, conditional op-
timization directives may not be needed; the optimization
could be applied unconditionally. For example, if a virtual
call site has the same dominant call target in all executions,
the analysis may decide to inline the method uncondition-
ally.

However, it is possible that the repository contains profile
data that contradicts itself for different runs of the program,
such as a call site that is dominated by calls to method A

in some executions, and method B in others. In this case, a
conditional online strategy makes it possible to instruct the
online system to look for certain conditions before applying
a particular optimization. The online system could first de-
termine whether the execution is biased toward method A

or B, then invoke the appropriate optimization plan.

2.4 Profile Analysis
The goal of the profile analysis component is to construct

an online strategy based on the profile data in the repos-
itory. This analysis is not required to be performed when
the repository is being read or written, thus it could po-
tentially be performed by a separate offline analysis engine,
or possibly using a background process that runs when the
processor is idle.

However, many users prefer not to have uninvited back-
ground processes running on their system; therefore, we have
developed our system to perform the profile analysis at the
time the profile repository is updated by the VM. When the
program exits and the VM is shutting down, its profile data
is merged into the profile repository, and the profile analysis
is performed to update the precomputed online strategies.
This computation is performed while the VM is active, so
the amount of work performed must be limited or it may be
perceived as overhead by the user.

Constraining the overhead limits the types of analysis that
can be performed; however, only a subset of the (hot) meth-
ods in the program need to be recorded and monitored, re-
ducing the amount of work to be performed. If the analysis
is still too expensive, there are a number of options. First,
it is not necessary to compute the online strategies from
scratch each time the repository is updated. Online strate-
gies can be adjusted incrementally to account for the new
information recently contributed to the repository. If the
profile analysis is designed as an iterative solution procedure,
the previous online strategy can be used as the initial solu-
tion to the algorithm. A small number of iterations are likely
to be needed, given that the change to the profile repository
after each execution will be minimal. To limit overhead, the
number of iterations per VM instantiation could be limited
to some fixed number (possibly even 1), so that the work
is distributed over multiple executions of the program; the
online strategies will become more refined as the number of
program executions increases.

Furthermore, if overhead is still a concern, the VM can
exploit the fact that the online strategies do not need to be
fully updated after every execution of the VM. The VM can
impose a limit on the amount of time it spends performing
the profile analysis; by remembering the point at which it
left off, it can resume the next time the program executes.
The time limit could be a function of the VM execution
time, to ensure that total overhead remains low.
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2.5 Profile repository decay
To rid the repository of old, stale information, the data

in the repository can be periodically decayed, similar to
the profile decay mechanism used online by the Self-93 sys-
tem [12]. Using decay has the advantage that it gives more
precedence to recent runs, and prevents the repository from
growing indefinitely.

3. SELECTIVE OPTIMIZATION
This section describes how we instantiate our general ar-

chitecture to address the problem of selective optimization.
Selective optimization is the process of determining what
parts of the program should be optimized, when optimiza-
tion should be performed, and what level of optimization
should be used. In most virtual machines, selective opti-
mization is likely to be the most important determining fac-
tor of VM performance for short to medium length execut-
ing programs. Dynamic compilers have become quite com-
plex; high optimization levels produce good quality code,
but at the cost of increased compilation time; using them
judiciously is critical for achieving good performance.

Traditional selective optimization uses online profiling to
predict which methods will run long enough to justify be-
ing optimized at a higher level. Many virtual machines
use simple counter schemes, triggering compilation when
a method’s invocation count (and possibly loop backedge
count) exceeds a fixed threshold [5, 11, 14, 21]. Other sys-
tems [1] use a more formal cost-benefit model for making
online decisions. Our system also uses this cost-benefit ap-
proach, as discussed later in Section 3.3.1.

The goal of our system is to use the profile repository to
make better predictions about a method’s future running
time. In the sections that follow we describe the details of
our repository when used for selective optimization. Specif-
ically, we discuss what information is stored in the profile
repository, the structure and use of the precomputed on-
line strategies, and our algorithm for constructing the online
strategies.

3.1 Profile repository: histograms
If every program had only one input, predicting a

method’s total future running time (during the execution
of that program input) would be simple. Virtual ma-
chines already profile the application and maintain a rough
breakdown of the amount of time spent in the hot meth-
ods [1, 11, 21]; this information could be written to the pro-
file repository, and fed into the program the next time it
executes.

However, most programs have multiple inputs, and these
inputs can drastically affect the running time of the pro-
gram, as well as the distribution of time spent in the var-
ious methods of the program. Therefore, for each method
in our profile repository we maintain a histogram of running
times, providing a probability distribution of the ending time
of each method. Given a method M , and a time T , the his-
togram for M tells us the number of program executions for
which the M executed for T time units before exiting.

Any unit of time, such as cycle count or wall-clock time,
could be used for recording time spent in a method. Our
virtual machine profiles time spent in methods using timer-
based sampling, thus method samples is the unit of time used
throughout our system.

When the VM exits, the information from the current
run is added to the aggregate information in the repository.
For each method that was sampled during the execution,
the corresponding histogram is retrieved from the repository
(or created if it does not exist) and the correct histogram
bucket is incremented, depending on how long the method
ran in the current execution. For each method in the reposi-
tory that was not sampled during the current execution, the
bucket for time zero is incremented. Note that this solution
tracks only methods that were sampled at some point during
the execution.

To minimize repository space and I/O time, we may map
multiple times values to the same histogram bucket as the
value of T increases. Distinguishing the histogram values for
consecutive times Ti and Ti+1 is important for small values
of i, but becomes less important when i becomes large. For
example, distinguishing between 1 vs 5 samples is important;
distinguishing between 501 and 505 samples is not. There-
fore, we use a non-uniform bucket size in our histogram. The
first N buckets each correspond to a single time unit; after
time N the bucket size increases polynomially to a maxi-
mum number of buckets. All samples that occur beyond the
maximum bucket are recorded using the last bucket.

3.1.1 Accounting for the effects of optimization
As optimization occurs, the distribution of time spent in

the various methods of the program changes. Optimizing a
method, M , reduces the amount of time it spends execut-
ing. A system using a naive approach to profile optimized
code will observe a reduced runtime for method M , and may
conclude that it no longer requires such a high level opti-
mization. This effect can lead to poor optimization choices,
and oscillation in the optimization decisions over time.

Therefore, our system accounts for these effects by record-
ing all method times in unoptimized time units, which repre-
sent the amount of time the method would have executed if
it had not been optimized. Since our system measures time
using method samples, our time unit becomes unoptimized-
samples (the number of samples the method would have re-
ceived if it had not been optimized).

To profile the application using unoptimized-samples, the
samples are scaled as they occur at runtime. When an unop-
timized method is sampled, the sample count is incremented
by 1 unit; when an optimized method (optimized at level j)
is sampled, the sample count is incremented by the rela-
tive speedup between optimization level j and unoptimized
code. For example, assume that code optimized at level j ex-
ecutes roughly 3 times faster than unoptimized code; when
a method compiled at level j is sampled, the sample count
is incremented by 3 units, rather than 1 unit. The resulting
sample count is an approximation of the sample count that
would have occurred if the method had not been optimized.

This methodology allows profiles from multiple runs to be
stored in a uniform fashion, regardless of what optimization
occurred at runtime.

3.2 Precomputed online strategies
A precomputed strategy for selective optimization in-

structs the online system when to compile methods, and
at what optimization level. Each precomputed strategy
consists of a set of tuples, 〈time, optLevel〉 and each tuple
corresponds to a method being compiled by the optimizing
compiler; time is the amount of time the method needs to
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execute (in our case the number of samples needed), and
optLevel is the optimization level to be used. For example,
the strategy {〈1, 2〉, 〈3, 4〉} directs the adaptive system to
compile at optimization level 2 after the first sample, and at
level 4 after the third sample.

Using these precomputed strategies at runtime is rela-
tively straightforward. When a method M is sampled, the
system checks whether there is a precomputed online strat-
egy for M . If so, it uses the current number of samples for
M , together with the precomputed strategy, to determine
what, if any, optimization should be performed. Follow-
ing a precomputed strategy is actually simpler, and more
efficient, than the online model-based cost/benefit analysis
performed by our system when precomputed strategies are
not available.

If a precomputed strategy does not exist for the sampled
method, or if the number of samples is beyond the maximum
number of samples previously observed for this method, the
system simply falls back to the default online recompilation
behavior.

3.2.1 Preserving the benefits of delayed compilation
If a method is to be optimized at some point during an

execution, performing that optimization earlier is generally
more beneficial because it will maximize the amount of ex-
ecution that occurs in the optimized version of the code.

However there are some disadvantages to performing op-
timization too early. When compilation is delayed, the op-
timizer has more information about the program available,
such as knowing more about the program’s class hierarchy,
thus providing more opportunities for speculative inlining.
Other examples include having more information about the
sizes of types, allowing more efficient inlined allocation se-
quences. If the method is compiled before execution begins,
these advantages are lost.

Our system uses a simple solution to perform compila-
tion as early as possible without giving up the advantages of
delayed compilation. If the precomputed strategy specifies
that method M should be optimized at time 0 (before the
method begins executing), the optimization is not actually
performed until the second invocation of method M . The
first invocation of M executes unoptimized, giving the VM
time to see code before it is optimized, and gain many of
the benefits of delayed compilation.

However, some programs contain long-running methods
that are invoked a small number of times, possibly only once.
Failing to optimize these methods prior to their first execu-
tion means that they may be stuck executing in the unop-
timized version indefinitely if the system does not perform
on-stack replacement [10]. Our system identifies these meth-
ods by observing the large number of unoptimized samples
that occur, and compiles them prior to their first invocation
in the next execution.

3.3 Model-based selection of online strategies
Given a method’s execution time probability distribution

(histogram), the profile analysis needs to construct an on-
line strategy. We initially investigated a number of sim-
pler, heuristic-based algorithms, but abandoned this ap-
proach quickly after seeing how poorly they performed in
all but the most simplistic scenarios. Instead, we developed
a purely model-based algorithm for constructing the online
strategies.

3.3.1 Modeling the effects of compilation
The version of the J9 JVM used in this work makes online

optimization decisions using a cost-benefit model, similar to
that used in Jikes RVM [1]. The same performance model
can be used for constructing a optimization strategy based
on profile data in the repository.

When compiling a method M at optimization level j, the
model can be used to estimate two quantities:

1. cost(M ,j): the amount of compile time that will be
consumed if method M is optimized at level j.

2. speedup(M ,j): the performance gain of executing
method M optimized at level j, relative to unopti-
mized code.

Our system estimates these quantities based on offline per-
formance measurements. The compile time cost is computed
as a linear function of method size, based on the compila-
tion rate (bytecodes/millisecond) of the compiler at level j.
The speedup of each optimization level is a constant time-
reduction factor relative to unoptimized code.

3.3.2 Objective function
The goal of our algorithm is to construct an online strat-

egy R that maximizes some characteristic of overall perfor-
mance. The choice of objective function may vary depending
on the desired performance goals for the system. For a gen-
eral purpose virtual machine, we chose an object function
that will maximize average performance if the history in the
profile repository were to repeat itself. More formally, for
a given method M , let r0, r1...rn represent the individual
runs of method M recorded in the profile repository. Our
algorithm selects a strategy R that minimizes:

�

i=1..n

R(ri)

unopt(ri)
(1)

where R(ri) and unopt(ri) represent the running time of
the ri when executed using strategy R, and when executed
unoptimized, respectively.

Note that this optimization function is different than min-
imizing total, or average running time, which would give
more weight to longer running executions of a program. For
example, assume that method M runs for 1 second in r1 and
100 seconds in r2, and there is a fixed optimization strat-
egy that performs 1 second of compilation at VM startup;
this optimization strategy may minimize the sum of the two
executions, but would double the running time of r1. By
evaluating the performance relative to unoptimized code,
our approach gives equal weight to all executions of the pro-
gram recorded in the repository, independent of their run-
ning times.

3.3.3 Algorithm: online strategy selection
Our algorithm works on a single method at a time,

and uses a dynamic programming approach to compute a
strategy that minimizes the objective function above for a
method M . The running time of the algorithm is O(N ∗K2)
where N is the number of buckets in method M ’s profile
distribution (histogram), and K is number of optimization
levels. K is expected to be a small constant (in our sys-
tem K = 4), thus the complexity is linear in the size of the
histogram.
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An intuitive description of the algorithm is as follows. The
algorithm begins at the end of time and walks backward. For
the current point in time t, the algorithm asks the follow-
ing question for each optimization level j: “If method M

is currently optimized at level j, what is the optimal strat-
egy to take from time t forward?” The optimal solution has
already been computed for time t + 1 (for all optimization
levels), thus the algorithm needs only consider the effects
from time t to time t + 1.

The histogram of method ending times is used to deter-
mine the number of program runs in which method M ex-
ecutes for at least t time units; performing compilation at
time t adds cost (and benefit) to only those runs.

When considering whether to optimize M at a higher op-
timization level h at time t, the algorithm considers three
factors:

1. The cost of performing the compilation at time t. This
cost affects only runs in which method M executed for
at least t time units.

2. The benefit of executing for one time unit (from time
t to time t + 1) at level h, rather than level j. The
algorithm credits this benefit only for runs where M

executed for at least t + 1 time units.1

3. The benefit of being optimized at level h from time
t+1 forward. This value was already computed in the
previous iteration of the algorithm.

If moving from level j to level h at time t is better than
staying at level j, then this compilation is recorded as part of
the optimal strategy. The algorithm continues moving back-
ward through time until time 0 is reached. The final strat-
egy reported is the optimal strategy computed for starting
at time zero at optimization level 0 (unoptimized).

The formal description of the algorithm is presented in
Figure 2. Let runsExecutingM(t) represent the number of
programs runs that execute method M for t time units or
more (computed from the profile histogram). Let j = 0...K

represent the optimization levels of the compiler, where level
0 represents unoptimized code. Let Cj represent the compile
time cost of M at optimization level j, and let Sj represent
the speedup of optimization level j relative to unoptimized
code (Sj = 0.5 if optimization level j is twice as fast as un-
optimized code). Variable Fj represents the optimal cost of
executing the program from time t + 1 forward, assuming
method M was already optimized at level j; Stratj repre-
sents the strategy that achieves time Fj .

3.3.4 Bounding compilation for unexpected inputs
The above algorithm will maximize average performance

only if future executions of the program occur as predicted
by the profile repository. If a new input demonstrates radi-
cally different behavior from previous runs, the performance
could be arbitrarily bad relative to the original system. For
example, if method M is predicted to be long-running, our
algorithm may select a strategy that optimizes M at a high

1Method M ’s execution time may be between time t and
time t + 1, but due to the profile granularity it can not be
known precisely. We make the assumption that optimiza-
tion performed at time t does not benefit these executions.
Alternatively, one could assume that on average the method
executed for time t + 0.5.

Input: Cj, Sj, runsExecutingM(t)

Fj = Stratj = 0 for all j // No future running time

iterate backward in time, t = tmax .. 0

for each optimization level j = K .. 1

// Optimal future time from time t forward
// if no compilation performed at time t.
// Divide exe time by t to scales for
// average performance (see Section 3.3.2)
exeT imeThisUnit = (Sj ∗ runsExecutingM(t + 1))
minCost = Fj + exeT imeThisUnit/t
action = {} // How to achieve minCost

for each optimization level h such that h > j
// Optimal running time if M is compiled at h
// at time t. Divide exe time by t to scale
// for average performance
compilationT ime = Ch ∗ runsExecutingM(t)
exeT imeThisUnit = Sh ∗ runsExecutingM(t + 1)
cost= Fh + (compilationT ime + exeT imeThisUnit)/t
if cost < minCost

minCost = cost
action = compile from level j to level h

at time ti

// We now have the optimal strategy for time t
// forward when starting at level j
Fj = minCost
Stratj = Stratj ∪ action

Output: F0, Strat0

Figure 2: Algorithm for computing a precomputed
online strategy from a method’s probability distri-
bution (histogram).

level of optimization at time zero. This time spent on compi-
lation may lead to poor performance (relative to the original
system) if a future input causes M to run for a short amount
of time.

To ensure reasonable performance for unpredicted pro-
gram inputs, we parameterize the algorithm with a compila-
tion bound. Given a compilation bound of X% the algorithm
discards solutions that would increase compilation time by
more than X% relative to the original system. A small con-
stant ε is added to running times to enable calculations at
time zero. Without this smoothing factor, no compilation
would ever be performed at time zero for any performance
bound.

To construct precomputed strategies that meet the re-
quirements of the compilation bound, the inner loop of the
algorithm is modified as follows. Let BOUND be the compi-
lation bound and ε be the smoothing factor described above.

for each optimization level h such that h > j

origComp = max compilation time that

could be performed by original

online system at time t

budget = (origComp + ε) ∗ (1 + BOUND)
if (Ch > budget)

// Skip Ch. Too expensive at time t

continue;

[remainder of original inner loop]
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3.4 Warming up the repository
One question that arises is how many executions should

be observed before the information in the repository should
be trusted and used for optimization. Should aggressive op-
timization decisions be made after observing a single execu-
tion? Should an arbitrary, fixed number of runs be required?

Our solution is to exploit the compilation bound (de-
scribed above, in Section 3.3.4) to slowly increase the ag-
gressiveness of the decisions made based on the repository.
The compilation bound begins at 0.0%, which allows no ad-
ditional compilation to be performed relative to the under-
lying online model-based system, thus effectively leaves the
original system unchanged.

Over the first N executions, the compilation bound is
increased linearly until it reaches some maximum value.
As additional program executions occur and the bound in-
creases, the optimization decisions will become more aggres-
sive until the maximum value of the bound is reached.

The values our system uses for these variables is described
in Section 4.

4. IMPLEMENTATION
We implemented our technique in the J9 Java Virtual Ma-

chine [11], one of IBM’s production Java virtual machines.
J9 is a fully functioning, high-performance JVM that con-
tains an interpreter, a JIT compiler with multiple optimiza-
tion levels, and an adaptive optimization system. The per-
formance of the J9 JVM is competitive with that of other
leading production JVMs.

The version of J9 used for this work has been extended
to use a cost-benefit model for making online optimization
decisions, similar to that used by Jikes RVM [1]. This model-
based version offers highly competitive startup performance
and is used as the base for all of our experiments in this
paper.2

Our initial implementation of the repository is stored on
disk as a simple text file, and methods are written based on
their signature (class name, method name, and arguments).
Our current implementation does not distinguish methods
with the same signature that are loaded with different class-
loaders. Similarly, our current system does not automati-
cally extract the profile data for the executing program from
the repository; the profile data for each program is manually
specified by the experimental test harness. These limitations
are not fundamental to the ideas being explored, and could
be addressed in a production implementation of our system.

5. EXPERIMENTAL EVALUATION
This section presents an empirical evaluation of our work.

5.1 Benchmarks
The first column of Table 1 lists the benchmarks used in

this study. The first seven benchmarks are the SPECjvm98
benchmark suite [20]. Pseudojbb is a modified version of
SPECjbb2000 that executes a fixed number of transactions,
rather than executing for a fixed time period. Ipsixql

2The version of J9 used for this study is an experimentally
modified version, thus the performance timings reported do
not represent official performance results for IBM’s J9 Java
Virtual Machine. In addition, this experimental version does
not constitute a product statement about any future releases
of the product JVM.

Small Input Large Input

Time Meth Size Time Meth Size
Program (s) exe (KB) (s) exe (KB)

db 0.38 901 841 10.32 902 841
jess 0.46 1281 1009 2.92 1295 1011
mtrt 0.60 1091 870 2.49 1073 870
jack 0.77 1090 940 3.69 1090 940
javac 0.81 1617 1147 5.44 1647 1147
mpegaudio 0.83 1029 931 3.55 1027 931
compress 1.14 891 839 8.92 890 839
ipsixql 0.62 983 785 3.91 1013 786
xerces 1.04 1513 1129 2.61 1512 1129
pseudojbb 7.46 1448 938 25.16 1447 940
soot 1.43 2136 1648 29.58 2768 1736
saber 2.72 3533 2738 17.02 4649 3097
daikon 3.01 2748 1839 16.04 1497 1840
cloudscape 2.01 5669 4026 18.28 9234 5961
eclipse 6.25 10119 7089 18.67 18767 14713

Table 1: Benchmarks used in this study.

is a benchmark of persistent XML database services [7].
The xerces benchmark measures a simple XML Parser ex-
ercise [23]. Daikon is a dynamic invariant detector from
MIT [8]. Soot is a Java bytecode analysis framework from
McGill University [19]. Saber is a J2EE code validation tool
developed within IBM [15]. Cloudscape is an open source
relational database system. [6]. Eclipse is the Eclipse Plat-
form IDE [9]; to benchmark Eclipse, we measure the time
it takes to start Eclipse and initialize a workspace given as
input.

To evaluate startup performance, programs were bench-
marked by recording the total execution time. Benchmarks
that contain an iterative driver, such as the SPECjvm98
benchmark suite, were configured to run only a single it-
eration of the benchark. Time spent reading, writing, and
processing the persistent repository is included in the tim-
ings.

For this entire paper, a “run” of a program always consists
of starting a new JVM and running the program to comple-
tion on a given input. This should not be confused with
benchmarking methodologies that use a harness to execute
multiple iterations of the program within a single JVM in-
stance, such as the official SPECjvm98 reporting procedure.

To produce a wide range of running times for the bench-
mark suite, each benchmark is run with two different sized
inputs: “small” and “large”. For each input size, Table 1
reports the following three quantities: 1) running time of
the benchmark (seconds) when run with the base version of
J9, 2) the total number of methods executed, and 3) the
total size of the program in kilobytes, measured as the sum
of the sizes of the classfiles loaded by the virtual machine
at runtime. The running time of these benchmarks ranges
from 0.4–29.6 seconds.

All numbers reported in this section are the median of 10
runs to reduce noise. The experiments were performed using
Red Hat Linux version 9.0 running on an IBM Intellistation
with a 3.0GHz Intel Xeon processor and 1 gigabyte of RAM.

5.2 Methodology
The performance of our system depends heavily on the

usage scenario of the virtual machine. Specifically, perfor-
mance depends on a) the inputs used to train the profile
repository, and b) the inputs used during the performance
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Figure 3: Single input scenario, steady-state perfor-
mance (performance when repository is warm).

evaluation. To provide a thorough understanding of the per-
formance implications of our technique, we evaluate its per-
formance using the following four usage scenarios.

• Single input: program is executed 25 times with
same input. This scenario presents the best case sce-
nario for our technique.

• Dual input: program is executed 25 times, alternat-
ing between the small and large inputs. This scenario
demonstrates the ability of our technique to be effec-
tive in the presence of bimodal program running times.

• Phase shift: program is executed 10 times with one
input, followed by 10 executions using the second in-
put. This scenario shows the behavior when there is a
change in program usage.

• Multi input: an expanded range of inputs is used (10
for each program). The program is then executed 50
times using all of the 10 inputs in a randomly selected
order. This scenario shows the behavior of our system
when used over a wide range of inputs.

For each scenario, performance is characterized in two
ways, warmup and steady-state. Warmup shows the behav-
ior of the system over time while the profile repository is
warming up (as described in Section 3.4). Steady-state

shows the performance that is eventually converged upon if
the input sequence is repeated long enough for the reposi-
tory to become fully warm.

Sections 5.3–5.6 describe each of the 4 user scenarios, re-
spectively, and Section 5.7 provides miscellaneous statistics
about our system.
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Figure 4: Single input scenario, behavior over time
as repository warms up. Performance averaged over
all benchmarks.

5.3 Single input scenario
This scenario evaluates the performance of our technique

when the program is run repeatedly with the same input,
thus representing a best case scenario for our technique.
This scenario should not be regarded as a theoretical limit
study, however, because this performance would be achieved
in practice if a user executes a program repeatedly with the
same input, or inputs, that result in similar behavior.

Figure 3 presents the steady-state performance results.
Each program and input pair is represented by a bar in
the graph. The x-axis represents the performance improve-
ment of our system relative to the base system (described
in Section 4), which uses only online information for making
compilation decisions.

The full length of the bar shows the performance of our
system with no compilation bound (see Section 3.3.4), thus
arbitrarily aggressive compilation decisions can be made at
any time during execution. In this scenario, our system
offers tremendous speedups over the base system, ranging
from 3.6% to 48.8% improvement, with an average of 16.6%.

The solid black portion of the bar represents the perfor-
mance of our system with a compilation bound of 25%. En-
forcing the compilation bound reduces the speedups for some
of the benchmarks, such as pseudojbb-small, jess-large

and daikon-large, but overall the performance was similar
to the unrestricted case ranging from 3.6% to 47.2% with
a geometric mean of 13.9%. The 25% compilation bound
offers most of the benefit of the unrestricted case, and pro-
vides more robust performance for unseen inputs, thus is the
configuration we use for the remaining experiments.

Recall that these speedups are relative to an already high-
performing system, as described in Section 4; it is our best
tuned version of a model-based selective optimization sys-
tem, and is implemented in a production JVM. The large
speedups obtained demonstrate the performance potential
of selective optimization. For short and medium length ap-
plications, improving the policy for making compilation de-
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Figure 5: Dual input scenario, steady-state perfor-
mance.

cisions can lead to much larger performance improvements
than could be achieved by improving the optimizer itself.

The benchmarks in Figure 3 are sorted in order of increas-
ing running time, confirming that our technique has a more
dramatic effect on shorter running programs (near the top),
as would be expected because our technique makes profil-
ing information available earlier in the program’s lifetime.
However, our approach improves performance for the longer-
running programs as well; the running time of the bottom 6
benchmarks is significant, ranging from 16 – 29 seconds on
a 3.0 GHz processor, and our technique produces speedups
ranging from 5.7% – 15.0%.

Figure 4 shows the warmup behavior of our system over
time for the single input scenario, averaged over all bench-
marks. Each point along the x-axis represents a program
run. The y-axis shows percentage improvement relative to
the base system. The circle shows the average performance
over all benchmarks, and the error bars show one standard
deviation.

During the first execution, the repository is empty, thus
the behavior is essentially identical to the base system;3

however, performance is slightly degraded due to the time
spent writing to the profile repository.

As additional program executions occur, the compilation
bound is increased (see Section 3.4) allowing more aggres-
sive compilation decisions to be made. Average performance
increases through roughly the first 15 execution, at which
point it levels out at around 15%.

5.4 Dual input scenario
This section presents a more challenging scenario by alter-

nating between the small and large program inputs. Figure 5

3Recall that when a precomputed strategy does not exist for
a method, the system defaults to the original online behav-
ior.
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Figure 6: Dual input scenario, behavior over time.
Performance averaged over all benchmarks.

presents the steady state performance results for this sce-
nario, using the same format as Figure 3. Despite training
the repository using two separate program inputs, the per-
formance gains for many of the benchmarks are nearly as
large as when trained on a single input.

Overall, the performance results are similar to Figure 3,
but with the longer running programs having slightly smaller
gains. These results confirm the success of our algorithm
for selecting online strategies (Section 3.3), demonstrating
its ability to construct an online strategy that is effective in
the presence of methods with bimodal running times. The
performance gains of the large inputs are reduced because
aggressive compilation needs to be delayed to ensure reason-
able performance for the small inputs; however, the system
still shows improvements in the range of 5% for the longest
running programs.

The compress benchmark is somewhat of an anomaly,
achieving large performance gains in both the single and
dual input training scenarios, ranging from 41% – 49%.
These gains are caused primarily because compress spends
the majority of its time in a small number of long-running
methods. Once these methods are invoked, they execute for
a long time without exiting, so making a wise initial com-
pilation choice is critical. This effect would be reduced in a
system that performs on-stack replacement (OSR) [10], but
would not disappear entirely. A system performing OSR
would still need to identify the long-running methods, and
pay the penalty of performing the on-stack replacement.
Our system would avoid these costs by making a better ini-
tial compilation choice.

Figure 6 shows the warmup behavior of our system over
time for the dual input scenario. The format of the graph
is the same as Figure 4; Each point along the x-axis repre-
sents a program run, the circle shows average performance
over all benchmarks, and the error bars show one standard
deviation.

In this scenario the program inputs alternate between the
small and large inputs. Our technique produces larger im-
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Figure 7: Phase shift scenario. Performance of first
execution with new input.

provements for the small inputs, thus the average perfor-
mance alternates between roughly 7% and 13%.

5.5 Phase shift scenario
Our technique improves performance by assuming that

past behavior will repeat itself in the future. This section
explores the performance of our system when this assump-
tion does not hold because program behavior changes. For
this scenario, each program was executed 10 times with one
input, then 10 times with the other input. Both phase shifts
were explored (small to large, and large to small).

The steady state behavior for this scenario is not inter-
esting because it would converge on the same performance
as the dual input scenario. Instead, Figure 7 presents per-
formance of the first execution after the change in input
size. The black bar shows the performance of the small in-
put after training on the large input; the gray bar shows the
performance of the large input after training exclusively on
the small input.

First, observe that almost all of the gray bars are positive,
with an average improvement of 4.3%, showing the perfor-
mance of the large inputs is improved even when trained
on the small inputs. This is not surprising because when
training on small inputs, our system usually performs some
compilations more aggressively than the base system, and
this aggressiveness is beneficial when executing the large in-
puts as well.

The main source of potential performance degradation for
our system is when executing a small input after training on
the large input (shown by the black bars). The aggressive
compilation performed early in the execution will likely de-
grade the performance of short running programs.

However, the performance of the small inputs actually
improved for the majority of the benchmarks as well, despite
being trained on the large input. This is largely attributed
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Figure 8: Phase shift scenario, behavior over time.
Performance is averaged over all benchmarks. The
top graph shows shifting from the small input to the
large input. The bottom graph shows shifting from
the large input to the small input.

to the compilation bound, which prevents the system from
being too aggressive early in the program execution. Even
when the profile repository suggests that a method is strictly
long-running, the compilation bound forces a delay of the
highest levels of optimization, thus methods start out at
lower optimization levels. This gradual approach creates
potential benefit even when the program exits earlier than
expected.

Five benchmarks showed slowdowns when switching to
the small input, with cloudscape being the largest by far
at -29.7%. Although these slowdowns are not ideal, they
are not unexpected in the presence of a phase shift, similar
to a cache miss or a page fault. Like most profile-guided
optimizations, our system strives to improve average perfor-
mance by potentially reducing the performance of unlikely
scenarios. However, bounding compilation keeps even the
worst-case performance manageable. Moreover, this perfor-
mance is truly unlikely, as it is expected only in the first
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Figure 9: Multiple input scenario, steady state per-
formance.

execution with a new input. After executing the new input
once, this repository will be trained on this input and react
accordingly, as shown in the next figure.

Figure 8 shows the average performance over time in both
of the phase shift scenarios. The first graphs shows the shift
from small to the large input, while the second graph shows
the reverse. Each point shows the performance average over
all benchmarks, and the error bars show one standard devi-
ation.

The dip in the curve shows when the input changed.
As discussed previously, the average performance over all
benchmarks is always positive, even for the first run of
the new input. The second run with the new input is
already substantially improved because the repository has
been trained on the new input, and performance continues
to improve as execution of the new input continues.

5.6 Multiple input scenario
For the final usage scenario, we expanded the set of in-

puts to create a more challenging execution scenario. Each
benchmark was augmented with 8 additional inputs, yield-
ing 10 inputs total. Table 2 presents the running time of the
programs with these inputs, sorted from shortest to longest,
when run using our base version of J9. The inputs were
chosen somewhat arbitrarily, but with some attempt to pro-
duce a reasonable distribution of running times that ranged
beyond the original small and large inputs.

For this execution scenario, a random input ordering was
selected for each benchmark, and this ordering was repeated
for 50 total executions of the benchmark. Figure 9 shows the
steady state performance for this scenario. Each bench-
mark has 10 performance results (one for each input). These
10 performance results are shown for each benchmark using
a boxplot. The black circle represents the median perfor-
mance of the 10 inputs. The rectangle represents the mid-
dle two quartiles (in our case, data points 3–8), and the
hash marks at the end of the horizontal line represent the
minimum and maximum performance. As with the previous

steady-state graphs, the x-axis represents speedup over the
base system.

The overall performance trend is overwhelmingly positive,
even when a wide range of inputs are used. Our system
outperforms the base system for all but 7 of the 150 pro-
gram/input pairs trained and evaluated using this method-
ology (15 programs with 10 inputs each), with the largest
degradation being 3.8%. The median improvement ranged
from 3.1 to 43.3%, with a average of 8.2% across the bench-
marks.

The performance improvement for compress was large for
all inputs (as discussed in 5.4), ranging from 43% to 73%;
its row in Figure 9 is empty because the entire boxplot falls
beyond the range of the chart.

Figure 10 shows average performance of the system over
time while executing in this multi-input scenario. Each
program was executed 50 times, using the randomly pre-
selected input order. Each point shows the performance
average over all benchmarks, and the error bars show one
standard deviation.

5.7 Repository characteristics
Tables 3 and 4 present characteristics of the profile repos-

itory for the benchmarks used in this paper.
Table 3 reports size characteristics of the repository for

each benchmark after being warmed up. Data is reported for
the small, large, and dual input scenarios. The repository is
generally smaller for the small inputs because fewer methods
are identified as hot and recorded in the repository. The
table shows the number of methods for which profile data is
recorded, both as an absolute number and as a percentage of
all methods executed during the program run. The second
column for each input scenario shows the total size of the
repository, in kilobytes and as a percentage of the program
size (size of the classfiles that are executed at runtime, as
reported in Table 1).4

Table 4 shows a breakdown of the overhead incurred when
reading and updating the repository. For each input sce-
nario, the table reports three quantities, all reported as a
percentage of the total execution time.

1. Startup I/O: time spent reading the precomputed
online strategies from the repository at program
startup.

2. Shutdown I/O: time spent reading and writing the
raw profile data repository, as well as writing the up-
dated precomputed online strategies.

3. Analyze: time spent performing profile analysis (the
algorithm presented in Section 3.3).

The amount of time spent updating the repository was
small, generally between 0.1%–0.3% of total execution time.
The largest overheads are incurred for the short running
inputs when trained in the dual training scenario; the av-
erage overheads were on the order of 0.5% for each com-
ponent, with the largest individual overhead being 1.9% for
profile analysis of cloudscape-small. Larger overhead is in-
curred in this scenario because the longer running program
writes more data to the repository; the short running pro-
gram needs to process the larger quantity of data, thus the

4For the dual input columns, percentages are computed rel-
ative to the large input.
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Input Number
Prog. 1 2 3 4 5 6 7 8 9 10

db 0.3 0.4 0.6 0.9 1.6 3.2 10 19 23 28
jess 0.3 0.5 0.6 0.9 1.3 2.0 2.7 4.4 6.0 7.7
mtrt 0.3 0.5 0.6 1.1 1.7 2.2 2.9 3.6 4.8 6.0
javac 0.5 0.5 0.6 0.8 0.8 0.9 1.8 3.2 3.3 5.3
mpegaudio 0.1 0.1 0.6 1.3 2.1 2.5 3.0 3.5 3.7 3.8
compress 0.6 1.1 2.3 2.8 2.9 3.6 4.0 5.0 5.1 6.1
ipsixql 0.8 1.6 1.8 2.3 3.7 4.0 5.0 7.5 10 16
xerces 0.8 0.9 1.0 1.1 1.3 1.5 1.6 1.7 2.1 5.7
pseudojbb 0.8 0.8 1.6 2.2 4.4 5.3 5.4 8.4 10 13
soot 1.5 1.9 2.0 5.2 7.0 12 17 18 29 45
daikon 1.5 2.7 5.0 6.7 8.2 8.8 9.4 11 12 14
saber 2.6 2.7 4.2 5.0 6.0 6.4 8.0 9.6 11 16
cloudscape 1.8 8.3 11 13 14 16 18 20 22 23
eclipse 5.9 8.8 8.9 15.5 18.0 18 19 19 20 22

Table 2: Running times in seconds for programs with the expanded set of 10 inputs.
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Figure 10: Multi input scenario, behavior over time. Performance averaged over all benchmarks.

Small Input Large Input Dual Input
Program Methods Size (KB) Methods Size (KB) Methods Size (KB)
jess 191 (14%) 19 (1%) 235 (18%) 28 (2%) 271 (20%) 33 (3%)
mtrt 262 (24%) 30 (3%) 237 (22%) 29 (3%) 266 (24%) 32 (3%)
jack 211 (19%) 21 (2%) 288 (26%) 33 (3%) 308 (28%) 35 (3%)
javac 443 (27%) 58 (5%) 732 (44%) 112 (9%) 772 (46%) 117 (10%)
mpegaudio 164 (15%) 16 (1%) 195 (18%) 21 (2%) 233 (22%) 26 (2%)
compress 81 (9%) 7 (0%) 70 (7%) 6 (0%) 107 (12%) 10 (1%)
ipsixql 119 (12%) 10 (1%) 136 (13%) 16 (2%) 173 (17%) 20 (2%)
xerces 233 (15%) 26 (2%) 327 (21%) 40 (3%) 360 (23%) 44 (3%)
pseudojbb 416 (28%) 50 (5%) 408 (28%) 54 (5%) 450 (31%) 60 (6%)
soot 381 (17%) 38 (2%) 1379 (49%) 174 (10%) 1425 (51%) 182 (10%)
saber 571 (16%) 65 (2%) 1093 (23%) 139 (4%) 1183 (25%) 152 (4%)
daikon 737 (26%) 81 (4%) 856 (57%) 101 (5%) 945 (63%) 114 (6%)
cloudscape 326 (5%) 35 (0%) 3079 (33%) 350 (5%) 3073 (33%) 358 (6%)
eclipse 675 (6%) 78 (1%) 2413 (12%) 312 (2%) 2597 (13%) 341 (2%)

Table 3: Repository Size Characteristics
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Single Input Dual Input

Start Exit Start Exit
Program I/O I/O Anl I/O I/O Anl
db-small 0.1 0.2 0.1 0.3 0.3 0.2
jess-small 0.1 0.3 0.2 0.2 0.6 0.4
mtrt-small 0.2 0.4 0.2 0.2 0.5 0.3
jack-small 0.1 0.3 0.1 0.2 0.5 0.4
javac-small 0.2 0.4 0.2 0.5 1.2 0.9
mpegaudio-small 0.1 0.3 0.1 0.1 0.5 0.3
compress-small 0.0 0.1 0.1 0.1 0.2 0.1
ipsixql-small 0.1 0.2 0.1 0.1 0.4 0.3
xerces-small 0.1 0.3 0.2 0.2 0.4 0.3
pseudojbb-small 0.0 0.1 0.1 0.0 0.1 0.1
soot-small 0.2 0.3 0.2 0.5 1.5 1.4
saber-small 0.1 0.2 0.1 0.2 0.6 0.4
daikon-small 0.1 0.3 0.2 0.2 0.5 0.4
cloudscape-small 0.1 0.2 0.1 0.8 1.9 1.0
eclipse-small 0.1 0.1 0.1 0.2 0.5 0.2
Mean small 0.1 0.2 0.1 0.3 0.6 0.4
db-large 0.0 0.0 0.0 0.0 0.0 0.0
jess-large 0.0 0.1 0.1 0.1 0.2 0.1
mtrt-large 0.1 0.2 0.1 0.1 0.2 0.1
jack-large 0.1 0.1 0.1 0.0 0.1 0.1
javac-large 0.1 0.2 0.2 0.1 0.3 0.2
mpegaudio-large 0.0 0.1 0.1 0.0 0.1 0.1
compress-large 0.0 0.0 0.0 0.0 0.0 0.0
ipsixql-large 0.0 0.1 0.1 0.0 0.1 0.1
xerces-large 0.1 0.2 0.1 0.1 0.2 0.2
pseudojbb-large 0.0 0.0 0.0 0.0 0.0 0.1
soot-large 0.0 0.1 0.1 0.0 0.1 0.1
saber-large 0.0 0.1 0.1 0.0 0.1 0.1
daikon-large 0.0 0.1 0.1 0.1 0.2 0.1
cloudscape-large 0.1 0.2 0.1 0.1 0.2 0.1
eclipse-large 0.1 0.2 0.1 0.1 0.2 0.1
Mean large 0.0 0.1 0.1 0.0 0.1 0.1

Mean all 0.1 0.2 0.1 0.1 0.4 0.3

Table 4: Overhead of updating repository. Columns
show percent of run time spent 1) reading the pre-
computed online strategies at VM startup, 2) per-
forming repository I/O at VM shutdown, and 3)
performing the profile analysis at VM shutdown.

overhead increases. However, as shown in Section 5.4, our
technique provides the largest benefit for the short running
programs, so the repository overhead is more than compen-
sated for. All performance data reported included the over-
head of reading and updating the repository.

The overheads in this section would likely be reduced with
a more highly tuned implementation of our system. The
repository is stored in plain text format and no effort was
made to compress the data or speed up I/O. In addition,
overhead can by reduced or limited by using the techniques
discussed in Section 2.4, such updating only a subset of the
data on each program execution.

6. RELATED WORK
We are not aware of any virtual machine that automati-

cally persists profile data across multiple runs of an applica-
tion, and uses this information together with online profiling
information at runtime to improve performance.

Systems that perform optimization based on offline profile
data have existed for many years [18]. However, requiring
a manual training step drastically reduces the chance that
such a technique will be used by a typical developer. In addi-
tion, all of these systems assume a clear distinction between

training and production runs, and none addresses how a
virtual machine would combine offline information together
with online information being collected at runtime.

Sandya [16] describes a preliminary study combining of-
fline and online profile data to guide selective optimization
in the Hotspot JVM. Their work is similar to ours in that it
combines both online and offline profile data to make online
optimization decisions in a VM. However, there are a num-
ber of differences. Their work uses explicit training runs to
collect the offline data, requires manually specifying a “confi-
dence” level in the offline data, and does not discuss training
on multiple inputs. The focus of our work is on avoiding the
manual training step, and ensuring good performance in the
presence of multiple inputs. Finally, their work combines of-
fline and online data using threshold-based heuristics, with
only preliminary data reported for the SPECjvm98 bench-
marks. Cross training is performed from size 10 to size 100
(train on size 10 and run with size 100) but not the reverse.
In our work, we were unable to find a simple, threshold-
based policy that would provide acceptable performance for
a wide range of benchmarks, input sizes, and execution sce-
narios.

Krintz and Calder [13] describe annotating Java bytecode
to identify hot priority methods that should be optimized
immediately at higher optimization levels. In addition to
requiring a training step, this work does not generalize to
programs that have a wide range of inputs. Their technique
specifies that methods are always optimized at a fixed opti-
mization level, without considering online profiling informa-
tion; if a program has two inputs, one short running and one
long running (as evaluated in Section 5.4) their fixed strat-
egy could perform poorly, either over-compiling for the short
running programs, or under-compiling in the long-running
ones.

Childers et al. [4] describe an architecture for a continu-
ous compilation, CoCo, which includes a dynamic optimizer
and the ability to perform optimization across multiple runs.
Their architecture assumes a static compilation model, and
makes use of profile data collected via explicit training runs.
The implementation of their work focuses mostly on model-
ing the impact of compiler optimization.

Cascaval et al. [22] presents a framework for Continuous
Program Optimization (CPO) across multiple levels of the
software stack (application, VM, OS, hardware), and per-
forms optimization over multiple executions of the program.
The initial instantiations of the archicture have focused on
offline profiling, collecting events at the operating system
and hardware level. Our work is online in a JVM, and can
be considered a “Online VM agent” in their architecture.

Other systems have performed ahead-of-time compilation,
or static compilation of Java [17], where compilation is per-
formed prior to program execution, thus avoiding the over-
head of performing compilation at runtime. This approach
has a number of advantages, such as avoiding the need
to perform compilation at runtime; however it has yet to
become popular for the Java programming language for a
number of possible reasons. First, it changes the execution
model, introducing security concerns by eliminating the pro-
cess of bytecode verification; modifying the compiled code on
disk would circumvent all of Java’s safety guarantees. Our
technique does not require the user to accept a new execu-
tion model, and does not introduce any security concerns.
Second, static compilation involves a number of technical
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challenges for dynamic language with features such as dy-
namic class loading and reflection; the code generated by
static compilers for Java is often substantially lower quality
than that generated by the dynamic JIT compiler. In addi-
tion, selective optimization is only example instantiation of
using the profile repository to improve performance. Even
systems that perform static compilation can benefit from
the use of online and offline profile data, thus can benefit
from many of the ideas presented in this work.

7. DISCUSSION
Any time new functionality is added to a virtual machine,

the designers must decide whether the benefits warrant the
cost of the additional complexity to the system. Compilers
and virtual machines are already incredibly complex and
their behavior is difficult to understand and debug. Having
the VM persist profile data across runs adds yet another
level of complexity, but after spending time working with
our system, we were pleasantly surprised in this regard.

The repository turned out to be an effective debugging
aid. At any given time, the profile data provide a summary
of what happened in previous runs, and the precomputed
online strategies describe what is about to happen in future
runs. Several times when searching for a bug, we ended up
not even needing to execute the program because looking in
the repository was sufficient.

8. CONCLUSIONS
This paper presented an architecture for a persistent pro-

file repository, allowing a virtual machine to remember pro-
file data across multiple runs of an application. This ap-
proach widens the scope of profile-guided optimizations, al-
lowing them to be performed over the lifetime of an appli-
cation, rather than being restricted to a single execution.

We described in detail how this architecture can be used
to improve selective optimization. Our results demonstrate
substantial performance improvements, with the average
performance ranging from 8.8% – 16.6% depending on the
execution scenario.

In future work we plan to use the profile repository to
improve additional optimizations, such as feedback-directed
inlining. Using a profile repository to augment these opti-
mizations should increase their benefit by allowing them to
be performed earlier in the applications lifetime.
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