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ABSTRACT

Triangle listing, or identifying all the triangles in an undirected
graph, is a very important graph problem that serves as a build-
ing block of many other graph algorithms. The compute-intensive
nature of the problem, however, necessitates an efficient method
to solve this problem, especially for large real-world graphs. In
this paper we propose a fast and precise in-memory solution for the
triangle listing problem. Our solution includes fast common neigh-
borhoods finding methods that consider power law degree distribu-
tion of real-word graphs. We prove how theoretic lower bound can
be achieved by sorting the nodes in the graph by their degree and
applying pruning. We explain how our techniques can be applied
automatically by an optimizing DSL compiler. Our experiments
show that hundreds of billions of triangles in a five billion edge
graph can be enumerated in about a minute with a single server-
class machine.

1. INTRODUCTION

Triangle listing, or identifying all the triangles in an undirected
graph, is a very important graph problem as it serves as a build-
ing block for many other graph analysis algorithms. For example,
counting the number of triangles is an essential step in computing
global and local clustering coefficients [27] as well as graph tran-
sitivity [20], all of which are important metrics in social network
analysis. Triangles are also a frequent basic pattern in graph mining
applications [13, 19]. For instance, Becchetti et al. demonstrated
that triangle patterns can be used to detect spamming activities [8].

Noticeably, the triangle listing problem is heavily computation
intensive. It takes a long time to solve this problem with conven-
tional algorithms, especially on large real-world graph instances.
Consequently, several distributed processing methods [12, 23, 26]
have been proposed in order to solve the problem more quickly.
There have even been attempts to obtain only an approximate num-
ber of triangles [21, 25] for the sake of fast execution.

In this paper, we present an exact, fast, parallel, in-memory method
for solving the triangle listing problem. Our solution is exact in
that we iterate all the triangles in the graph. Our methods per-
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forms such iteration in a very fast, parallel manner, as long as the
graph instance fits in the main memory of a single machine. We ar-
gue that this in-memory assumption is reasonable even for process-
ing fairly large graph instances, considering the memory capacity
of contemporary server-class machines. For example, Twitter has
been using an in-memory graph analysis framework which is able
to handle their massive follower graph and largely responsible for
their who-to-follow recommendation service [14]. Similarly, SAP
HANA provides a successful off-the-shelf in-memory graph anal-
ysis option [11]. Indeed, using an efficient representation, a large
graph having 5 billion undirected edges consumes about 40 GB of
main memory, while modern analytic servers are easily equipped
with hundreds of gigabytes of DRAM.
The contributions of our paper can be summarized as follows:

e We present a novel fast implementation of the common neigh-
bor iterator that considers the power-law degree distribution
of large real-world graph instances. (Section 3)

e We propose novel extensions to the conventional in-memory
triangle counting algorithm and explain how their combined
effect achieves an asymptotic lower bound on the triangle
counting algorithm’s execution time. (Section 4)

e We show how an optimizing compiler can automatically ap-
ply our techniques to a high-level Domain Specific Language
program (Section 5)

e We present an experimental evaluation of our implementa-
tion demonstrating that it outperforms existing state-of-the-
art triangle counting solutions. We also provide an in-depth
analysis of the effects of all the optimizations we introduced.
(Section 6)

2. BACKGROUND

In this section we provide some background information on the
nature of the triangle counting problem, the conventional algorithm
that is used to solve this problem, and the infrastructure we used to
develop our solution.

2.1 Triangle Listing and Counting Problem

Formally, the triangle listing problem and its variant, the trian-
gle counting problem, are defined on simple, undirected graphs as
follows:

PROBLEM 1. Let G = (V, E) be an undirected, simple graph,
where V is the set of nodes and E is the set of edges in G. The Tri-
angle Listing problem is to identify set T = {(u,v,w) : u,v,w €
V, (u,v), (v,w), (w,u) € E, whereuw # vAv # wAw # u}. In



Procedure Edgelterator (G: Graph)
Long T = 0;
// iterate over all edges of graph G
Foreach (e: G.Edges) {
Node u = e.FromNode(); // one end of edge e
Node v = e.ToNode () ; // the other end of edge e
// iterate over each common neighbor of u and v
Foreach (w: CommonNbrs (u,v)) {
T++;

: Long {

b}
Return T/3; // eliminate repeated triangles
}

Figure 1: Edgelterator algorithm

Procedure NodeIteratorPlusPlus (G: Graph)
Long T = 0;
// iterate over all nodes of graph G
Foreach (u: G.Nodes) {
// iterate over neighbors of v such that v>u
Foreach (v: u.Nbrs) (v>u) {
// iterate over neighbors of w such that w>v
Foreach(w: u.Nbrs) (w>v) {
If (w.IsNbr(v))
T++;

: Long {

P
Return T;

}

Figure 2: Nodelterator++ algorithm

other words, T is the set of three-cliques in graph G. The Triangle
Counting problem is to identify |T|, that is the size of T.

The triangle counting problem is also considered interesting be-
cause there are cases when only the number of triangles is required
but not the actual list. Note that solving the triangle listing problem
trivially solves the triangle counting problem, as one can simply
enumerate all the triangles without producing the list. In this paper,
we present a solution for the triangle listing problem but use it to
solve the triangle counting problem — i.e. we omit the output list
construction.

2.2 Baseline Algorithm

Our baseline algorithm is a combination of two existing algo-
rithms described in the literature, the EdgeIterator [22] algorithm
(Figure 1) and the NodeIterator++ algorithm [23] (Figure 2).

The EdgeIterator algorithm [22] presented in Figure 1 iterates
over all edges of a given graph and identifies triangles by consulting
a common neighbor iterator to determine all common neighbors of
two end-point of each graph edge. The common neighbor iteration
is implemented by comparing the adjacency data structures of the
two edge end-points, or with a hashed container.

The NodeIterator++ algorithm [23] presented in Figure 2 iter-
ates over all nodes in the graph and for each node u identifies a pair
of its neighborhood nodes, v and w, to check if they in turn are con-
nected with each other by an edge. Unlike its original unoptimized
version, the NodeIterator++ algorithm assumes that there exists a
total ordering among all nodes in the graph, which is used to avoid
repeated counting as shown in Figure 2.

Our baseline algorithm, combining the EdgeIterator and the
NodeIterator++ algorithms is presented in Figure 2.2 — similarly
to the NodeIterator++ algorithm, it iterates over all nodes in the
graph and takes advantage of total node ordering to avoid repeated
counting, but similarly to the EdgeIterator algorithm it utilizes
the common neighbor iterator. The motivation standing behind this
CombinedIterator algorithm is that the in-memory graph repre-
sentation used for our algorithm implementation (described in Sec-
tion 2.3) supports very efficient implementation of both all-node
iteration and common-neighbor iteration.

Procedure CombinedIterator (G: Graph)
Long T = 0;
Foreach (u: G.Nodes) {
Foreach (v: u.Nbrs) (u>v) ({
Foreach (w: CommonNbrs (u,v)) (w>u) {
T++;

: Long {

b
Return T;

}

Figure 3: CombinedIterator Algorithm

The algorithm descriptions in this section are all expressed in
Green-Marl [15], a Domain Specific Language(DSL) for graph anal-
ysis. The semantics of the language in these examples are largely
self-explanatory, with additional clarifications provided in the com-
ments. In Section 3 and Section 4, we will discuss our enhance-
ments over the baseline algorithm in Figure 3 both in algorithmic
way and in its implementation. Although these enhancements do
not require the use of a DSL, in Section 5 we will show how these
enhancements can be automatically applied to the high-level pro-
grams as Figure 3 or Figure 2 by the DSL compiler.

2.3 In-memory Graph Representation

We adopt the conventional Compressed Sparse Row (CSR) for-
mat as in-memory graph representation. In this representation,
node v in the graph is represented as a unique identifier (nid(v)),
an integer between 0 and n-1, where N is the number of nodes in
the given graph. However, in the remainder of the paper, we use
nid(v) and v interchangeably. Note that this representation natu-
rally imposes a total ordering required for NodeIterator++ and
CombinedIterator algorithm in Section 2.2.

The edge structure of the graph is encoded in two arrays:

e cdge — concatenation of the neighborhood lists of all the
nodes in the graph in ascending nid order.

® begin — an array of indices which points to the beginning of
the neighborhood list of the corresponding nid. This array
maintains one sentry node at the end.

Moreover, each neighborhood list is sorted by values (i.e. nid of
destination nodes). Therefore, for each node v, Adj(v) is a sorted
array, unless Adj(v) is empty. This invariant is sometimes referred
to as the semi-sorted property in literature, in order to distinguish
it from the concept of sorting and numbering the nodes by their
degree values (Section 4).

Although the CSR format is originally designed to represent di-
rected graphs, it can be used for undirected graphs as well via du-
plication. That is, if there is an edge (u, v) in the given graph, we
put v in Adj(u) as well as put u in Adj(v). Therefore the size of
the array edge in CSR representation becomes 2 * E, where E is
the number of edges in the undirected graph.

The CSR encoding allows for even large graphs to be represented
efficiently in terms of memory utilization. As an example, let us
consider the Twitter-2010 graph instance [17]. It has been consid-
ered large as the undirected version has ~ 41.7 million nodes and
~2.4 billion edges (details see Table 1). However the CSR repre-
sentation of this graph is relatively small. If we use 32-bit integer
as nid (i.e. vales stored in edge array) and 64-bit integer as indices
(i.e. values stored in begin array), the CSR representation of the
graph will then occupy a little less than 19 GB.

2.4 Characteristics of Real-world Graphs

The focus of our work is on large real-world graphs that draw
huge interest in academia and industry these days, such as social
graphs, web graphs, or biological networks. Recent studies [7, 27]
have revealed that the vast majority of these large real-world graphs
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Figure 4: Degree Distribution of Twitter-2010 graph (undirected)

share certain interesting characteristics. One such characteristic is
scale-freeness which states that the degree distribution of nodes in
such graphs is far from uniform but follows a power law instead. In
other words, in such graphs there exist a small number of nodes that
are connected to an extremely large number of other nodes, often
as many as O(XN), in contrast to most of the nodes which have only
a small number of neighbors.

As an example, consider the undirected version of the Twitter-
2010 graph that we introduced in Section 2.3. Figure 4 illustrates
the node degree distribution for the Twitter-2010 graph by showing
how often (y axis) a node with a given degree (x axis) appears in the
graph. As one can observe, millions of nodes in the Twitter-2010
graph have degree smaller than 10 and only small number of nodes
have degree higher than 10000. Moreover, there exist a few nodes
which have millions of neighbors.

The high-degree nodes in a scale-free graph can have a detri-
mental effect on the performance of a triangle counting algorithm
— Section 3 and Section 4 discuss how our solution alleviates this
issue.

3. FAST COMMON NEIGHBOR ITERATION

The combinedIterator source code in Figure 3 reveals that the
main part of the triangle counting solution is to repeatedly search
for common neighbors of different pairs of nodes. Therefore the
key to a fast triangle counting implementation is to have a fast
method for identifying common neighbors of two nodes.

In order to identify common neighbors in a large real-world graphs,

however, one has to consider the power-law degree distribution of
such graphs. Although there exist only a handful of nodes whose
degree is very large, it takes a long time to identify common neigh-
borhoods between such a high degree node and another node. Con-
versely, the high degree nodes have a lot of two-hop neighbors and
need to be processed many times for identifying common neigh-
borhoods with those many small-degree nodes.

In the remainder of the section, we propose two methods for al-
leviating these problems, by taking advantage of some nice charac-
teristics of our CSR graph representation described in Section 2.3.

3.1 Hybrid Linear Scan and Binary Splitting

In our CSR representation, neighborhood information for each
node is stored in a sorted adjacency array. Therefore the common
neighborhood finding problem is reduced into finding common el-
ements in two sorted arrays, Adj(u) and Adj(v). Since these two
arrays are already sorted, all the common elements can be identified
with a single linear scan on both arrays, as in merge-sort. This takes
only O(d,, + dy). The original EdgeIterator implementation by
Schank and Wagner took this approach.

However, this naive approach performs badly when there is a
large difference between sizes of the two adjacency arrays, i.e.,
when identifying common neighbors between a high-degree node

void do_hybrid(node_t adj_v[], node_t adj_ul]) {
// let adj_v be the larger array
if (adj_v.size() < adj_u.size())

swap (adj_u, adj_v);

if (adj_u.size() <= 0) return;

// switch to linear search

if ((adj_v.size() < axadj_u.size()) ||
(adj_v.size() < B))
linear_scan(adj_v, adj_u); return;

}

// pick middle element in one array

// do binary search in the other

size_t idx_v = adj_v.middle();

size_t idx_u = binary_search(adj_u,adj_v[idx_v]);

if (adj_vI[idx_v] == adj_ulidx_ul) {
found_common_element (adj_v[idx_v]);
idx_u++;

}

idx_v++;

// recurse

do_hybrid(adj_v.left_to(idx_v-1),
adj_u.left_to(idx_u-1))

do_hybrid(adj_v.right_from(idx_v)
adj_u.right_from(idx_u)

// exclusive
i
, // inclusive
)i

}

J

Figure 5: Hybrid linear scan and binary splitting common neighbor
iterator implementation
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Figure 6: Segmenting Index

and a low-degree node. This is because the larger array may need
to be scanned entirely, no matter how small the other array is.

In order to address such cases, we adopted another method, namely
binary splitting. In this method, the search for a common neighbor
starts with choosing the middle element of the larger array and do-
ing a binary search on the smaller array. This splits both arrays
in two and the procedure is then recursively applied to each of the
sub-arrays.

Binary splitting is efficient when the size of one array is signifi-
cantly larger than the size of the other array, as it can prevent some
array elements from being read altogether. On the contrary, when
two arrays are similar in size, this technique may result in read-
ing certain array elements multiple times and thus execution time
becoming higher than that of a linear scan.

Consequently, we end up with a hybrid solution combining the
best features of both basic techniques, as presented in in Figure
5. There are two control parameters that affect the behavior of the
hybrid technique: o controls to what extent a difference between
two adjacency array sizes affects selection of one of the basic tech-
niques and S controls how the selection is affected by the absolute
array size. That is, if the larger of the two arrays is less than « times
bigger than the smaller, we do linear scan, concluding that they are
similar in size. If the size of the larger array is smaller than 3, we
also do the linear scan, since simpler instruction flow of linear scan
tends to work better when both arrays are very small.

3.2 Segmenting Index

It has also been proposed that one can build up a hashed con-
tainer for every adjacency array, supporting O(1) node lookup time
in the container [22]. This way, when computing common neigh-
bors of two nodes, one can iterate over the adjacency array of
one node and look up visited nodes in the hashed container. This
bounds the time to perform common neighbor search for nodes



void common_nbr (node_t v, node_t u) {
if (v.degree()<u.degree()) swap(v,u);
if (v.degree()<a*u.degree() || // similar size
v.degree () <B)
linear_scan(v.nbrs (), u.nbrs());
else if (v.degree()>y)
search_by_index (v.get_index(),u.nbrs());
else
do_hybrid(v.nbrs(),u.nbrs());
}

J

Figure 7: Common neighbor iterator implementation with seg-
menting index

and v to O(min(dy, dv)), where d,, and d,, are degrees of nodes
u and v, respectively. However, it requires huge amounts of mem-
ory to build up hashed container for every adjacency list in a large
graph.

To address this issue, we adopted two simple approaches.

First, we take into consideration the power law degree distribu-
tion of the real-world graphs and we construct the index only for
nodes whose degree is larger than a certain threshold specified as
the control parameter . We identify these high-degree nodes and
build the index structure only once at the beginning of the algo-
rithm.

Second, as for the implementation of the index structure, we use
a memory-efficient data structure rather than using a general hash
table (e.g. unordered_map from C++ standard library). Specifi-
cally, we use segmenting index (Figure 6) which takes advantage of
the fact that the neighborhood array is already sorted and that the
value range of the array is fixed as 0 — V.

These two observations allow us to segment the adjacency ar-
ray of v such that each segment contains elements within a certain
range specified by the control parameter . We then create an ad-
ditional array structure of size ([IN/d] + 1) that points to the be-
ginning of each segment (Figure 6). The look-up time using this
index is then bound to O(logd). In Section 6 we will demonstrate
that this index structure indeed improves performance while using
much less memory than using a general unordered_map from the
C++ standard library.

Figure 7 presents the final implementation of our common neigh-
borhood iteration method, which combines both the hybrid solution
and the segmenting index. If the adjacency arrays of the two nodes
are similar in size, even when any of the two nodes has an index
structure, we do linear scan. If that is not the case, we use index
structure of the larger array if present, or revert to the hybrid search
scheme otherwise.

As anote, the degree () method in the figure is retuning the size
of the adjacency array of the node after the pruning optimization is
applied — the pruning optimization will be described in Section 4.

4. ALGORITHMIC EXTENSIONS

In this section we present two extensions to the baseline
CombinedIterator algorithm (Section 2.2) and explain how these
extensions achieve the theoretic lower bound of the algorithm’s
complexity.

The first extension is to perform early pruning of nodes which
have no chance of forming a triangle. Please note that nodes vis-
ited by the CombinedIterator algorithm conform to the following
invariant: w > u > v (Figure 3). Also note that in our CSR repre-
sentation the adjacency list of each source node is sorted by nid of
the destination nodes (Section 2.3). Consequently, when searching
for common neighbors of nodes « and v, we do not consider nodes
whose nid is smaller than or equal to the nid of node u at all. In-

Node Num: 0 1 VooV N-2 N-1

Adjacency \_‘—J
Array:

IAd] (V)] < N-v

N v
Figure 8: Visualization of the proof of Theorem 4: Note that
|Adj’ (v)|(N — v) = (the shaded area) < (Sum of white boxes’
area) =

stead, we prune such nodes from both arrays at the beginning of
the search. And because, adjacency lists are stored in sorted arrays,
such pruning can be completed in O(log d., + log d.).

The second extension is to sort the nodes of the graph by their
degree in ascending order. In terms of our CSR representation, we
reassign the nids such that for all nodes u’ and v’ in the sorted
graph, if v/ < o' then |Adj(u’)| < |Adj(v')|. Thus after the
sorting, the node with nid O has the lowest degree, and nid N — 1
the highest.

The actual implementation of this procedure involves not only
sorting of the begin array but also re-sorting each of the adjacency
list segment in the edge array, because the nid assignment has been
changed. The time complexity for these operations is O(N log V)
and O(E log F), respectively. Although this sorting operation may
look expensive at first, it turns out that the sorting leads to dramatic
performance improvement, when combined with early-pruning. In
fact, we can prove that they lead to the computational lower-bound
of triangle listing problem, through the following theorem:

THEOREM 1. Let, G be a sorted graph, v a node in G, Adj’ (v)
the adjacency array of v after applying early-pruning, and | Adj' (v)|
the length of Adj' (v).

Then, |Adj’ (v)| < VE, Yv € G, where E is the number of
edges in G

PROOF. We use Figure 8 as a visual help for carrying out the
proof. The figure presents a degree-sorted (from left to right) graph
where each node’s neighborhood data is represented as a white ver-
tical box depicting a nid-sorted adjacency array Please note that F,
that is the number of edges in the graph, can be visualized as the
sum of all the white boxes.

Let us consider node v in the graph. By the pruning invariant
w > u > v, the pruned adjacency array Adj’(v) contains only
nodes with nids greater than v. Thus it contains at most N — v
elements (|Adj'(v)] < N — v), since there are at most N — v
nodes whose nid is greater than v, and there can be at most one
edge between each pair of nodes in a simple graph. Furthermore,
since the graph is sorted, there exists N — v arrays for all nodes n
whose nids are greater than v, such that |Adj’ (v)| < |Adj(v)| <

|Adj(n)]
Therefore:
N-1
|Adj’ (v)* < (N —0)|Adj'(v)| < 30 |Adj(n)| < E
O

Consequently, the total computation time of the CombinedIterator
algorithm (even with Linear-Scan) becomes O(EVE) = O(E3/?),
reaching the theoretical lower bound of triangle listing problem [22].

Note that applying early pruning on a sorted real-world graph has
the same effect of eliminating nodes with the highest degree skew



(i.e nodes having O (V) neighbors). More importantly, real-world
large-scale graphs are typically very sparse, that is E = davg N,
where dq. 4, the average degree of the graph, is some small number
(e.g. 100). In such a case, the above bound of triangle counting
becomes O(N?3/2), which is even lower than the complexity of
counting triangles without explicit listing: O(N?-372%) (Section 7).

S. COMPILER-ENABLED OPTIMIZATION
AUTOMATION

In this section, we discuss how the algorithmic extensions de-
scribed in Section 4 can be automatically applied by an optimizing
compiler. For this purpose, we use the Green-Marl DSL [15] to ex-
press the triangle counting algorithms, and rely on our Green-Marl
compiler to generate an efficient C++ implementation of the given
algorithm.

First, Green-Marl’s compiler automatically transforms the

NodeIterator++ algorithm (see Figure 2) into the CombinedIterator

algorithm (see Figure 3) by identifying the following pattern:

Foreach (x:y.Nbrs) {
If (x.IsNbr(z)) { // z and x can be exchanged
// body statements
b}

and converting it to use the common neighbor iterator:

Foreach (x:CommonNbrs (y, z)) {
// body statements

}

The compiler can also identify the following edge iteration pat-
tern:

Foreach (e:G.Edges) {
Node x e.FromNode () ;
Node vy e.ToNode () ;
// body statements

}

and transforms it into the node iteration pattern:

Foreach (x:G.Nodes) {
Foreach (y:x.Nbrs) {
Edge e = y.ToEdge(); // edge from x to y
// body statements
} o}

Consequently, both EdgeIterator (with proper filtering expres-
sions for total ordering) and NodeIterator++ algorithms can be
automatically transformed into the CombinedIterator algorithm,
which can take advantage of our fast common neighbor iterator
(Section 3).

Next, the Green-Marl compiler automatically parallelizes the code
of the combinedIterator (Figure 3). In particular, the compiler
parallelizes the outermost loop and generates a C++ program utiliz-
ing the OpenMP [9] parallel for pragma with chunking. See [15]
for further information about parallelization strategies in Green-
Marl.

During code generation, The compiler maps the CommonNbrs it-
eration into our backend C++ library which implements our com-
mon neighbor identifying method described in Section 3. The state-
ments inside the CommonNbrs loop become a lambda function that
is inlined with our C++ common neighbor iterator implementation.

In addition, the compiler also automatically applies the pruning
optimization (Section 4). Specifically, the compiler identifies com-
mon neighbor iteration routines with filter expressions:

// EXP: any expr, not-dependent on w or loop-body
Foreach (w:CommonNbrs (u,v) ) (w > EXP) {

// loop-body
}

The compiler then checks if the filter expression dictates the min-
imum (or maximum) value of the common neighbor. If so, the
compiler inserts the early pruning operation in the generated code:

// the generated C++ code
commonNbrIterator I(u,v);//an encapsulation of Sec. 3
I.setMinValue (EXP); // early pruning
I.iterate(
// loop-body becomes a lamdba function
)i

Finally, the compiler automatically inserts code that checks the
graph to see if there is already an index structure for common
neighbor identification and builds one if it doesn’t exist. How-
ever, the compiler does not automatically insert code for sorting the
graph. Instead it relies on the user to trigger sorting - see Section 6
for the motivation of this decision.

6. EXPERIMENTS

In this section, after discussing the experimental methodology,
we present performance comparisons between different triangle count-
ing solutions. Then we provide an in-depth analysis regarding the
performance impact of each of our techniques explained in Sec-
tion 3 and Section 4.

6.1 Methodology

We ran all our experiments on machines featuring two differ-
ent types of architectures, x86 and SPARC. The numbers for the
SPARC architecture were generated on a T5-8 machine (8x16 3.6
GHz cores with 8 virtual threads each, 4TB of RAM) running So-
laris 11. The numbers for the x86 architecture were generated on
a cluster of 16 Intel Xeon E5-2660 (Sandy Bridge) machines (2x
8 hyper-threaded 2.2GHz cores, 264GB of RAM) running 64-bit
SMP Linux 2.6.32.

We ran our experiments on a variety of large real-world graphs.
Table 1 describes a short description of each graph along with its
origin and some characteristics. Prior to running experiments, all
graphs have been converted to their undirected versions as described
in Section 2.3.

6.2 Performance Comparisons

The main goal of our experimental analysis was to compare the
performance of our graph counting implementation with the perfor-
mance of the existing state-of-the-art solutions. The experimental
data we collected is presented in Table 2. The execution times pre-
sented in the table are split into three categories:

e Loading — time to load the graph fully into memory (appli-
cable only to solutions supporting in-memory analysis)

e Pre-proc. - time to perform solution-specific graph pre-
processing tasks (see below for details)

e Computing — time to run the actual algorithm

In the first two data columns, we present execution times for
our implementation of the CombinedIterator algorithm, on a sin-
gle node of the x86 cluster and on the T5-8 SPARC machine, re-
spectively, featuring the early-pruning and degree-sorting optimiza-
tions. In case of our implementation, graph loading time includes
conversion to the undirected graph and pre-processing time includes
sorting graph nodes by their degree. The reported execution times
are an average from three runs — the observed variance between
runs was below 2%.



Graph Number of Number of Number of Number of Data
Name Nodes Directed Edges  Undirected Edges Triangles  Description Source
Patents 3,774,768 16,518,948 33,037,895 7,515,023 citation graph for U.S. patents [5]
LiveJournal 4,848,571 68,993,773 86,220,856 285,730,264  social relations in an on-line community [5]
Wikipedia 15,172,740 130,166,252 247,079,325 358,442,188 links in English Wikipedia [3]
Twitter-2010 41,652,230 1,468,365,182 2,405,206,390 34,824,916,864  Twitter user profiles and social relations [17]
UK-2006-05 77,741,046  2,965,197,340 5,285,526,791  363,786,546,359  monthly snapshot of the .uk domain [4]

Table 1: Real-world graph datasets used in the experiments.

Noticeably, all of our execution times shown in the table are ex-
tremely short. Even with the largest UK-2006-05 instance, a single
x86 execution took only 64 seconds to count 363 billions triangles,
with additional 18 seconds spent for preprocessing. With a TS ma-
chine that features many more (but weaker) cores, the computation
time is even shorter: 26 seconds. Overall, T5 execution is 1.14x
~ 6.97x faster than x86 execution for computation phase. This is
mainly due to massive amount of cores of the T5. On the other
hand, preprocessing time on T5 has been increased since our sort-
ing algorithm is not fully parallelized; single TS core performed
less than x86 core despite of its higher clock frequency.

Next, we compare our performance with GraphLab2 [12], an
open-source distributed graph processing engine. To the best of
our knowledge, the triangle counting implementation provided in
GraphLab2’s built-in package, has been known as the fastest (dis-
tributed or single-machine) in-memory implementation.

In the middle three data columns (grouped together) of Table 2,
we present execution times of the GraphLab2’s implementation.
We downloaded the source code of GraphLab2 from their web
site [1], compiled it using a script provided with the engine dis-
tribution (using g++ 4.8.1), and ran the built-in triangle counting
algorithm with all the graphs using 1, 2 and 16 machines of our
x86 cluster, exploiting all the cores of all the machines. We fol-
lowed the recommendations of the GraphLab2 authors with respect
to the remaining parameters settings. Especially, when running on
a single machine, all the cores in the system were wholly dedicated
to computation.

In the following discussion regarding GraphLab2’s performance,
we only consider time for computing phase for the sake of fair com-
parison. Note that this consideration is in favor of GraphLab2. As
for loading time, we used a custom binary file format for our sys-
tem, but a text-based one (i.e. edgelist) for GraphLab2 due to com-
patibility issues. As for preprocessing time, while we counted their
finalizing step as preprocessing, GraphLab2 may consider issues
related to distributed computation, which we do not.

We first compare the single machine performance by looking at
the first and the third data column in Table 2. The numbers show
that our implementation is 2.95x to 10.95x faster than GraphLab2’s.
Note that GraphLab2’s performance becomes relatively worse for
smaller instances; GraphLab2, being a general framework, has a
certain amount of fixed overheads which become harder to com-
pensate with smaller instances. That said, GraphLab?2 failed to pro-
cess the UK-2006-05 instance on a single x86 machine, running
out of memory during its finalizing phase.

Next, we consider the cases when multiple machines were used
for GraphLab2 execution. Our single x86 execution was still faster
than 16 machine execution of GraphLab2 for all graphs other than
Twitter-2010 instance. As for the case of Twitter-2010 instance, the
break-even point was around 8 machines. Note that the execution
time of GraphLab2 with two machines is longer than GraphLab2
with a single machine, as communication overheads are introduced
when using multiple machines; it needs several machines to com-
pensate such overhead. Finally, our SPARC execution time are
even faster than 16 machine execution of GraphLab2 for all graph
instances, including Twitter-2010.

Finally, we consider other triangle counting methods that adopt
various out-of-memory techniques [18, 16, 23]. We simply cite the
execution times of these methods from their original publications,
since these numbers are not for direct comparison, but for general
illustration of performance benefit when loading the whole graph
into memory.

GraphChi [18] and MGT [16] are external solutions designed for
small systems, where only a portion of the graph can be present in-
memory at any given time. The authors of MGT [16] proved their
optimality of their external algorithm. Still, there is a large inherent
performance gap between in-memory solutions versus external so-
lutions. Finally, the Hadoop implementation [23] are significantly
slower than those of the other methods, due to the inherent over-
head of yet scalable Hadoop framework.

6.3 Performance Analysis

In this section we present an in-depth analysis of the overheads
related to graph loading, of parallelization impact, as well as of the
implications of applying different optimizations and varying pa-
rameters of our methods. For this purpose we focus on the Twitter-
2010 graph instance throughout this section.

6.3.1 Graph Loading and Pre-processing

Table 3 shows a break-down of Twitter-2010 loading and pre-
processing time. The original graph is directed and thus loading
includes both the time it takes to read the data from disk (from a
simple binary format which is essentially a disk snapshot of the
CSR representation) and the time to create an undirected version of
the graph. The loading time is reported for reference purposes only,
as it may vary greatly between different on-disk representations. In
particular, if the graph is already stored on-disk as an undirected
graph, the explicit undirecting step would be omitted.

Table 3 also shows the breakdown of preprocessing time as index
creation time and graph sorting time. Noticeably most of the pre-
processing time is spent on sorting the graph by degree (Section 4).
Also note that SPARC takes longer than x86 for the preprocessing
phase; sorting and index building have been parallelized only par-
tially while a single SPARC core is weaker than a single x86 core.
We are currently improving parallel implementation of these steps.

6.3.2 Impact of Optimizations

In Figure 9(a) we present execution times (preprocessing time
plus computation time) on a single node of the x86 cluster when
only some combinations of the three optimizations described in
Section 3 and Section 4, that is pruning, sorting and index, are
enabled. For example, the combination +prune, -sort, +index
means pruning and index are applied but sorting is not.

When comparing +prune and -prune configurations, one can
observe that applying pruning was always beneficial. Similarly,
adding index optimization also improved execution time except for
when sorting and pruning was already applied, which overall formed
the best performing configuration, with no performance impact from
the index optimization in this case. On the other hand, applying
sorting was beneficial only when it was applied together with prun-



Ours (X86)T  Ours (SPARC)T GraphLab2 [12]7 GraphChi [18] MGT [16]  Hadoop [23]

CPU type Intel Xeon SPARC Intel Xeon Intel i5 Intel N/A

(Model) E5-2660 T5-8 E5-2660 N/A N/A N/A

Environment CPU Freq. 2.2GHz 3.6GHz 2.2 GHz 2.5GHz 3 GHz N/A
Cores x HTs 16%*2 128%8 16%2 2%] N/A N/A

DRAM 264 GB 4TB 264 GB N/A N/A N/A

# Machines 1 1 1 2 16 1 1 1636

Patents Loading 0.69 0.93 7.54 7.74 7.83 - - -
(304MB) Pre-proc.. 1.35 0.55 7.38 6.85 3.25 - - -
Computing 0.16 0.11 1.75 3.25 2.04 - - -

LiveJournal Loading 1.30 1.78 17.66 18.04 18.10 - anluded) (@ncluded)
(736MB) Pre-proc. 1.47 1.17 13.81 11.04 4.20 - (included) (included)
Computing 0.76 0.26 3.34 5.67 3.24 - 20 319.8

Wikipedia Loading 2.82 4.50 54.27 5491 55.14 - - -
(2.06GB) Pre-prog. 3.73 2.23 42.95 35.96 12.02 - - -
Computing 2.48 1.19 10.46 13.31 6.81 - - -

Twitter-2010 Loading 26.8 41.77 | 469.77 477.08 479.31 (included) - (@ncluded)
(18.6GB) Pre-proc. 16.7 35.19 | 469.79 238.03 51.92 600 - (included)
) Computing 101.3 14.54 | 299.28 220.61 62.50 3,600 - 25,380
UK-2006-05 Loading 30.1 60.37 N/A 105949 1054.71 - (?ncluded) -
(40.5GB) Pre—proq. 18.8 28.12 N/A 492.27 80.54 - (included) -
Computing 63.8 25.37 N/A 348.04 124.09 - 1000 -

Table 2: Execution times (in seconds) for different triangle counting implementations: columns marked with T represent execution times we
measured ourselves, while other numbers are cited from their original publications. The size of graph when expressed in CSR format with

4B nid, is shown under each graph name.
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Figure 9: Effect of various optimizations (a) and breakdown of execution time per adjacency arrays sizes (b)

+prune +prune +prune +prune -prune -prune -prune -prune
+sort +sort -sort -sort +sort +sort -sort -sort
+index -index +index -index +index -index +index -index
(@
x86  SPARC
Loadin File Reading | 3.6 26.8
& Undirecting | 232 14.9
Pre-proc Index Creation | 0.3 7.35
proc. Sorting | 164 27.84

Table 3: Loading and Pre-processing time (in seconds)

ing — otherwise it was detrimental to performance. Figure 9(b) pro-
vides some additional insight into this performance phenomenon.

Figure 9(b) presents an alternative way of viewing the optimiza-
tions impact. Similarly to Figure 9(a), it shows breakdown of the
execution time when counting Twitter-2010 graph triangles on a
single x86 machine, but each of the three total execution times de-
picted in the figure is broken down into segments representing the
execution time it took to find a common neighbor (and thus a trian-
gle) by analyzing pairs of pruned adjacency arrays of a given size.
For example, in the (4, 3) segment, number 3 denotes the size of
one adjacency array to be in the 10> — 10® range and number 4
denotes the size of the other adjacency array to be in the 10 — 10*
range (number 2 corresponds to sizes smaller than 100 elements
and 5+ corresponds to sizes larger than 10°).

Let us first consider the case when only the pruning optimization
was applied (the +prune, -sort, -index configuration). Clearly,

most of the execution time is spent when one array is large (e.g.
5-+) and the other is small (e.g. 2). As one can observe, adding the
index structure dramatically reduces the execution time in this case
(+prune, -sort, +index). Adding the sorting optimization further
reduces the execution time (+prune, +sort, +index), as all large
arrays are then pruned to O(v/E) size which makes their size drop
below the value of the - control parameter (see Section 3.2) and
the index never be used in this configuration. We have also ob-
served, that applying sorting without applying pruning can harm
overall performance by causing poor load balancing between mul-
tiple cores, which effectively negates all benefits of the parallel ex-
ecution.

Note that the -prune, -sort, -index configuration would corre-
spond to a parallel version of the baseline EdgeIterator algorithm
(no hash) in Schank and Wagner’s [22]. Similarly, the -prune, -sort,
+index configuration would correspond to a parallel version of the
EdgeIteratorHashed by the same authors. These figures thereby
show that our contribution is not simply providing a parallel im-
plementation of conventional algorithms but adding a significant
algorithmic improvement as well. !

'Even for implementation, a naive parallel implementation of
Edgelterator and EdgelteratorHashed would perform worse



6.3.3 Parameter Sensitivity Analysis

As described in Section 3, our implementation of the common
neighbor iterator uses four control parameters: «, (3, v, and 6. In
Figure 10 we illustrate the impact of choosing different parameter
values on the performance of the triangle counting algorithm run-
ning on a single node of the x86 cluster. The figure marks with
circles the values of all the parameters that we ultimately used as
default in our implementation (and used when running all other ex-
periments described in this section): 40 for «, 256 for 3, 1024 for
~ and 65536 for 4.

Figures 10(a)-(b) show the effect of different values of the o and
[3 parameters on the +prune, -sort, -index configuration. These
parameters control when the system chooses binary splitting over
linear scan when processing adjacency arrays during common neigh-
bor iteration. When values of o or 5 are too large, the system starts
favoring linear scan over binary splitting even when processing a
small array with a really large array and thus leads to significantly
increased execution time. At the same time, if the values of these
parameters are too small then binary splitting is invoked even in
cases when its higher constant cost negates all possible advantages
over linear scan.

Figures 10(c)-(d) show the effect of different values of the vy and
0 parameters on the +prune, -sort, +index configuration. These
parameters control for which nodes the system will construct an in-
dex () and what the size of the index segments will be (§), and dif-
ferent values of these parameters can affect not only the execution
time of the algorithm (pre-processing time and computation time)
but also the amount of memory consumed by the index structure.

Figure 10(d) demonstrates that smaller values of ¢ lead to ex-
ecution time improvements at the cost of increased memory us-
age. However, the total amount of memory consumption can be
limited by choosing the value of « appropriately, as illustrated in
Figure 10(c).

In Figure 10(c) we also show the execution time and memory
consumption when using unordered_map from the C++ standard
library as the index structure instead of the segmenting index. As
one can observe, the segmenting index (with § = 1024) consumes
10x less memory while still offering performance superior to that
of the unordered_map.

6.3.4 On Graph Indexing

In Section 6.3.2 we concluded that the index structure is not be-
ing used when pruning and sorting optimizations are already ap-
plied, due to (pruned) adjacency list sizes dropping to below a
threshold enabling use of the index. For certain situation it still
makes sense to create an index, e.g. to solve the local triangle
counting problem, a variant of the local triangle counting problem
where the task is to only count triangles which include a given node.
In this case, we cannot rely on the fact that the same triangle has
been already counted when processing lower-numbered nodes.

7. RELATED WORK

Over the years, many variants of triangle counting and listing
algorithms have been developed. Schank and Wagner [22] sur-
veyed and compared several of the most popular ones, including the
NodeIterator and EdgeIterator algorithms described in Section
2.2. They also proposed Forward algorithm that achieves O(E3/2)

than our -prune, -sort, -index and -prune, -sort, +index con-
figuration, respectively, since they would not get benefits from our fast
common neighborhood iterator implementation in Section 3.1. Moreover,
naive implementation of hash collection would blow up the memory for
large graph instances. See our parameter sensitivity analysis in 6.3.3 for
details.

(where E is the number of edges in the graph) lower bound. How-
ever, their experiments showed that it did not performed as well as
the EdgeIterator algorithm for large graphs, since it relies on a
dynamic data structure modified during the algorithm run, which
leads to a relatively high constant overhead. Moreover, such a sin-
gle, dynamic data structure does not suit for parallel execution. To
the contrary, our method achieves the O(E3/ 2) lower bound with
small constant factors and with parallelism trivially enabled.

Theoretically, it is possible to solve the triangle counting prob-
lem without solving the triangle listing problem [6]. That is, the
number of triangles can be computed by multiplying the adjacency
matrix of an input graph (by itself) two times, summing up the di-
agonal elements of the result, and dividing the resulting number by
two. This method provides theoretic bound of O(N?-372%) (where
N the number of nodes), same as that of matrix multiplication.
Although this bound seems lower than aforementioned O(ES/ 2)
bound, it is actually higher for the case of large real-world graphs
where O(E) equals to O(IN). Moreover, fast matrix multiplication
typically requires O(/N?) memory, which is impossibly huge even
with moderate size graph instances.

The triangle counting problem can also be solved in a distributed
setting [23, 26, 12]. Suri and Vassilvitskii used Hadoop to count
triangles in the Twitter-2010 graph but their implementation suf-
fered from a very high overhead, as reported in Section 6. Walka-
uskas [26] demonstrates that the HP Vertica distributed database
system [2] can count the number of triangles in the LiveJournal
graph in 90 seconds on four 12-core machines. It takes our im-
plementation less than 5 seconds to perform the same task (in-
cluding loading time, pre-processing time and computation time).
GraphLab?2 (a.k.a. PowerGraph) is a recently developed distributed
graph processing engine [12]. Although GraphLab2 can solve the
triangle counting problem much faster than other distributed frame-
works, it is still outperformed by our in-memory solution, as we
demonstrated in Section 6.

Several external (where the input graph is not fully loaded into
memory at any instance of time) algorithms to solve the triangle
counting problem have also been proposed in the literature [10, 16,
18]. Chu and Cheng presented two fast external algorithms [10]
then followed by Hu et al. which presented an external algorithm
that achieves the asymptotic optimal lower-bound [16]. Kyrola
et al. also showed that their GraphChi graph processing frame-
work can solve the triangle counting problem on the large Twitter-
2010 graph instance with a small PC [18]. In contrast to these
approaches, we focus on in-memory graph processing, as it deliv-
ers performance unmatched by the external algorithms while still
easily handling large graphs with billions of edges.

There also exist approaches that estimate the number of trian-
gles in a given graph rather than providing the exact count [24, 25,
21]. Although these methods can achieve fairly high accuracy, they
clearly cannot be used if the exact number of triangles is the de-
sired output and, perhaps more importantly, they cannot be used to
solve the triangle listing problem. Note that the execution time to
compute the exact answer with our method for the twitter graph is
less than the time reported in a parallel, approximate method [21].

8. CONCLUSION

In this paper, we presented a fast, exact, parallel, in-memory so-
lution for the triangle listing and thereby the counting problem. We
prove that our technique achieves the known computation bound.
Our experiments confirm that our implementation is faster than any
other existing in-memory, distributed, or external methods. We be-
lieve that our findings can be used to enhance distributed solutions
as well.
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Figure 10: Parameter sensitivity analysis — a circle marks the parameter value we have ultimately chosen
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