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ABSTRACT
As memory transactions have been proposed as a language-
level replacement for locks, there is growing need for well-
defined semantics. In contrast to database transactions,
transaction memory (TM) semantics are complicated by the
fact that programs may access the same memory locations
both inside and outside transactions. Strongly atomic se-
mantics, where non-transactional accesses are treated as im-
plicit single-operation transactions, remain difficult to pro-
vide without specialized hardware support or significant per-
formance overhead. As an alternative, many in the commu-
nity have informally proposed that a single global lock se-
mantics [18, 10], where transaction semantics are mapped to
those of regions protected by a single global lock, provide an
intuitive and efficiently implementable model for program-
mers.

In this paper, we explore the implementation and per-
formance implications of single global lock semantics in a
weakly atomic STM from the perspective of Java, and we
discuss why even recent STM implementations fall short of
these semantics. We describe a new weakly atomic Java
STM implementation that provides single global lock se-
mantics while permitting concurrent execution, but we show
that this comes at a significant performance cost. We also
propose and implement various alternative semantics that
loosen single lock requirements while still providing strong
guarantees. We compare our new implementations to previ-
ous ones, including a strongly atomic STM. [24]

Categories and Subject Descriptors
D.1.3 [Programming techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.3 [Programming lan-
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guages]: Language Constructs and Features—Concurrent
programming structures

General Terms
Algorithms, Design, Experimentation, Languages, Measure-
ment, Performance

1. INTRODUCTION
Transactional memory (TM) offers a promising alternative

to lock-based synchronization as a mechanism for managing
concurrent access to shared data. Over the past decade, TM
research has demonstrated how implementers can automat-
ically extract concurrency from declarative critical sections
and provide performance and scalability that are competi-
tive with fine-grain locks.

In spite of this, in one respect TM has complicated mul-
tithreaded programming. In order to write correct multi-
threaded code, programmers must be able to reason about
what observable behaviors are allowable. Outside of TM,
there has been significant progress in this area. Formal mem-
ory models have been developed that precisely define the set
of allowable behaviors in the presence of threads. In Java,
where threads are intrinsically part of the core language, the
memory model is a fundamental part of the language specifi-
cation and critical to its type safety and security guarantees.

When transactional memory is added to this mix, there is
no consensus on how it should impact the language memory
model. Unlike database systems [9] where all data accesses
are transactional, most TM implementations must handle
situations when the same data is accessed both transac-
tionally and non-transactionally. Because of this, nearly
all published STM systems provide weaker guarantees for
transactions than locks. Consider the publication example
in Figure 1. Thread 2 reads data early into the private lo-
cation tmp. However, that value is only used if ready is
set. If the transactions are replaced with locks, this pro-
gram will run correctly: val would either be 0 or 1 depend-
ing upon which critical section executed first. Nevertheless,
most STMs would produce the value 42 in Thread 2 given
the interleaving in Figure 1. As Thread 1 writes data out-
side a transaction, a weakly atomic STM would not detect

314



Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic {
5: ready = true;
6: }
7: if(ready)
8: val = tmp;
9: }

Can val == 42?

Figure 1: Publication example with a seemingly be-
nign race

Initially data = 42, ready = false, val = 0

Thread 1 Thread 2
data = 1; atomic {

atomic { if(ready)

ready = true; val = data;

} }

Can val == 42?

Figure 2: A correctly synchronized publication ex-
ample

any conflict and, thus, would not invalidate Thread 2’s read
operation.

It should be noted that, even under locks, this program
has a data race: Thread 1 and Thread 2 may access data

simultaneously. However, from the programmer’s perspec-
tive, the value is never used in this case, and the race should
be benign. Java’s memory model [19] (assuming lock seman-
tics) specifically disallows any execution that produces 42 in
Thread 2. In fact, this example also has implications for cor-
rectly synchronized programs. Standard compiler reorder-
ing can inadvertently introduce a data race. Consider a cor-
rectly synchronized variant of this program in Figure 2 where
Thread 2 only accesses data inside the conditional. Com-
piler optimizations such as speculative redundancy elimina-
tion or instruction scheduling may still introduce a data race
by hoisting the access (e.g., to line 2 in Figure 1) if profitable.
Such optimizations assume that introduced races are benign.

An appealing solution is to provide strong atomicity [5,
24] 1, where non-transactional memory accesses are analo-
gous to single instruction transactions and prevented from
violating the isolation of transactions. In this model, trans-
actions are strictly more restrictive than locks and, thus,
provide programmers with sufficiently strong guarantees. How-
ever, strong atomicity typically requires either specialized
hardware support [23, 4, 11, 21] not available on existing
systems, a sophisticated type system [13, 22, 1] that may not
be easily integrated with languages such as Java or C++,
or runtime barriers on non-transactional reads or writes [24]
that can incur substantial cost on programs that do not use
transactions.

An alternative approach in the literature is to provide
weak atomicity, where no general guarantee is made on non-
transactional code, but to augment it to allow idioms such
as privatization. In general, this approach is guided by the

1The term strong isolation is also used in the literature.

principle that, if a programming idiom is correct for locks,
it should also be correct for transactions. More specifically,
there is a notion that transactions should behave as lock-
based regions based upon a single global lock [18].

In this paper, we explore weakly atomic semantics from
the perspective of Java. In particular, we investigate seman-
tics that adhere to two basic principles that Java’s memory
model already provides for lock-based programs. First, for
correctly synchronized programs, a transactional semantics
may only admit sequentially consistent executions. Second,
for incorrectly synchronized programs, a transactional se-
mantics must still result in “reasonable” behavior to provide
sufficient safety and security: values may not appear mag-
ically out of thin air and ordering rules must be respected.
We make these high-level contributions in this paper:

• We discuss the implications of single global lock se-
mantics on STM behavior. In particular, we will show
that, under such semantics, the Java memory model
requires an STM to be privatization and publication
safe and to prevent speculative effects from becoming
visible to other threads.

• We describe a weakly atomic Java STM implemen-
tation that provides single global lock semantics for
transactions. Our implementation permits optimistic
concurrency, but it only allows executions that are con-
sistent (under the Java memory model) with a seman-
tics where all transactions execute as if under a single
global lock.

• We describe and implement three weaker semantics:
disjoint lock atomicity, asymmetric flow ordering, and
encounter-time lock atomicity. These semantics pro-
gressively weaken the restrictions of single global lock
atomicity to allow greater concurrency. The first two
obey the principles described above for correctly and
incorrectly synchronized programs. The last does as
well but restricts compiler and hardware reordering
within transactions.

• We investigate the performance implications of these
implementations by comparing them with previous un-
safe weakly atomic and safe strongly atomic Java STMs.
We discuss the various performance challenges that
these semantics raise for future research.

2. CORRECTNESS AND SAFETY
FOR STM

Sequential consistency was originally proposed by Lam-
port [17] as an ideal model for the correct execution of con-
current programs. A sequential consistent execution can be
defined as one whose behavior is compatible with a total or-
dering over all operations on all threads that also respects
program order for individual threads. This ordering specifies
the behavior of conflicting memory accesses. For example, a
read from a memory location should return the most recent
value written into that location in the total ordering. From
a programmer’s point of view, sequential consistency is both
simple and intuitive.

However, hardware and systems implementers generally
consider sequential consistency to be prohibitively expen-
sive. It disallows even simple reordering of memory accesses
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and greatly limits the scope of compiler and hardware opti-
mization. Instead, researchers and implementers have taken
a more balanced approach of providing sequentially consis-
tent behavior for only a subset of programs that are deemed
to be correctly synchronized [3].

In particular, there is an emerging consensus around data-
race freedom as a definition of correctness. Language-level
memory models define a happens-before relation 2 between
related synchronization actions on different threads that, in
conjunction with program order, transitively establishes a
partial ordering over all operations. Examples of such re-
lated synchronization actions include a write and a read of
the same volatile variable or a release and an acquire of
the same lock. This order allows language designers to de-
note dangerous conflicting accesses in terms of a data race.
Specifically, a sequential execution contains a data race on a
memory location loc if and only if there exist two conflicting
accesses on loc that are not ordered by the happens-before
relation. If an execution has no data race on any location, it
is a race-free execution. A program is considered data-race
free if and only if every valid sequential consistent execution
is data-race free. Recent language memory model work [19,
7] aims to guarantee that any execution of a data-race free
program will be sequentially consistent.

Language memory models differ significantly on the guar-
antees they provide for incorrectly synchronized (i.e., non
data-race free) programs. In C++ and other non-managed
language environments [6, 27], there appears to be a consen-
sus towards a catch-fire semantics, where the presence of a
single data race removes all guarantees and constraints on
behavior. In Java, where concerns of type safety and secu-
rity are paramount, program behavior is well defined even in
the presence of races. In particular, Java [19] makes two pri-
mary requirements. First, program executions must respect
both program order (within a single thread) and synchro-
nization order (across multiple threads). Second, program
executions must not create values out of thin air. Infor-
mally, this ensures that a memory read will return the value
written by some memory write in that execution (where,
to avoid cycles, that write itself was not control dependent
on the read). In this section, we will discuss how memory
transactions impact these requirements, and focus on those
issues that are often problematic for STM implementations.

2.1 Maintaining Ordering
Java STM implementations must respect a happens-before

relation induced by the Java memory model between two op-
erations. In general, STMs do not directly affect ordering
between two non-transactional memory operations. Any or-
dering requirements between non-transactional accesses are
left to existing Java mechanisms. STMs also are designed to
properly handle interactions between two transactional op-
erations. If two transactional operations conflict, the STM
will detect this and ensure that the transactions are prop-
erly ordered. Unsurprisingly, difficulties typically arise when
non-transactional accesses are ordered with respect to trans-
actional accesses.

This type of ordering falls under one of two patterns: the
privatization pattern generalized in Figure 3 and the publi-
cation pattern generalized in Figure 4. In correctly synchro-

2We use Java memory model [19] terminology here. Other
emerging memory models provide a similar ordering rela-
tionship.

nized programs, these idioms reflect how a synchronizing
action (i.e., a privatizing or publishing action) can convert
data from a shared state to a private state, or vice versa.
When data is private, a programmer can reasonably expect
to access it directly (e.g., non-transactionally). When data
is shared, it should be accessed in a protected manner (e.g.,
transactionally).

An STM implementation provides privatization safety if,
given the pattern in Figure 3, it respects the happens-before
ordering from transactional access S1 to non-transactional
access S2. Privatization has been well-studied by STM re-
searchers [15, 18, 24, 26, 8, 28]. As violations can adversely
affect correctly synchronized programs, there is general con-
sensus that STMs must respect privatization safety for both
managed and unmanaged languages. Implementing privati-
zation safety in an optimistically concurrent, weakly atomic
STM requires some form of global coordination between con-
current transactions as discussed in the next section.

Similarly, an STM provides publication safety if, given the
pattern in Figure 4, it respects the happens-before ordering
from non-transactional access S1 to transactional access S2.
In contrast to privatization, publication [20, 1] is less studied
but also impacts STM correctness as illustrated in Figure 1.
While privatization violations occur because transactional
write operations can be delayed by an STM, publication vi-
olations occur because transactional read operations may be
speculated early. In the latter case, however, the program it-
self has a data race. In Figure 1, an execution where Thread
2’s transaction preceeds Thread 1’s has a race on data (al-
beit a seemingly benign one if tmp is dead), and thus the
program itself is not correctly synchronized.

In contrast, the similar but correctly synchronized pro-
gram in Figure 2 does not suffer a publication problem with
the same interleaving. Because of this, an STM implemen-
tation can ignore publication-safety, but only under the fol-
lowing conditions:

• The programming language does not guarantee correct
execution in the presence of benign races.

• The compiler does not speculatively hoist memory op-
erations onto new program paths inside a transaction
(e.g., during code motion or instruction scheduling).

• The STM itself does not introduce speculative reads of
data inside a transaction. (STM implementations that
create shadow copies of an object or a cache line on
write essentially introduce early reads of non-written
fields. This type of speculative read has been previ-
ously referred to as a granular inconsistent read. [24])

The combination of these conditions prevent the early ex-
ecution of a read that can in turn lead to an ordering vi-
olation. This may be acceptable in the context of emerg-
ing memory models for C or C++. In the context of Java,
however, the first condition is itself too strict. The Java
memory model clearly limits the effect of benign data races.
Moreover, in race-free executions of racy-programs (as in
Figure 1), sequential consistency is still expected. Thus,
Java STMs must explicitly disallow publication safety viola-
tions. In the following sections, we will discuss implementing
both privatization and publication safety together in weakly
atomic STMs.
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Thread 1 Thread 2
1: atomic {
2: S1;
3: }
4: [synchronizing action]
5: S2;

Figure 3: A privatization safety template where a
transaction and synchronizing action are ordered
and S1 and S2 conflict.

Thread 1 Thread 2
1: S1;
2: [synchronizing action]
3: atomic {
4: S2;
5: }

Figure 4: A publication safety template where a syn-
chronizing action and transaction are ordered and S1

and S2 conflict.

Initially x == y == z == 0

Thread 1 Thread 2 Thread 3
1: atomic {

2: atomic {

3: // open read x, y
4: x++;

5: if(x != y)

6: z = 1;

7: z = 2;

8: y++; *abort*

9: } }

Can z == 0?

Figure 5: Speculative effects in a race-free program

Initially x == y == z == 0

Thread 1 Thread 2 Thread 3
1: atomic {

2: atomic {

3: if(x == 0)

4: y = 1;

5: else y = 2;

6: z = 1;

7: x = 1;

8: }

9: *abort*

10: }

Can z == 1 and y == 0?

Figure 6: Speculative effects in a racy program

2.2 Preventing Values Out of Thin Air
In addition to respecting ordering constraints, STM im-

plementations must avoid allowing values to appear out of
thin air. In particular, the Java memory model requires
the value returned by a read operation to correspond to the
value installed by some write operation earlier in the exe-
cution. Here, we investigate safety properties, that, when
violated, can lead to values out of thin air.

Granular safety is a well-understood issue in STM im-
plementations [24]. Granular safety requires that transac-
tional accesses to one location do not adversely affect non-
transactional accesses to an adjacent location by essentially
inventing writes to those locations. If an STM implementa-
tion’s granularity of buffering or logging subsumes multiple
fields, it must avoid observable writes to fields not explicitly
written to in the original program.

An STM provides speculation safety if the effects of specu-
lative execution are invisible to other threads. Violations of
this property lead to speculative dirty reads and speculative
lost updates [24]. In some cases, this leads to data races in
otherwise race-free programs.

An important case of speculation safety violations are ob-
servable side-effects due to inconsistent execution. We say
that an STM provides observable consistency if it permits
side effects to be observable by other threads only if they
are based upon a consistent view of memory. This condition
is a standard STM requirement in unmanaged platforms,
where an inconsistent memory access can lead to a catas-
trophic fault (e.g., a read or write to protected memory)
that would never have occurred in a lock-based program.
We argue that it is also an essential requirement for pre-
serving the correctness of race-free programs, and, thus, a
strict safety condition that managed STM implementations
must respect.

A violation of observable consistency is illustrated in Fig-
ure 5. This program is correctly synchronized. Although
Thread 2 contains a write to z, under locks this write is
never executed and does not consitute a data race. But in
an optimistic in-place update STM with weak isolation [2,
14], a doomed transaction with an inconsistent view of mem-
ory might write z. For an unmanaged platform, this is al-
ready problematic. The write to z could result in a program
fault that would never have occurred in a non-speculative
execution. Recent STMs for unmanaged platforms prevent
this by enforcing a consistent view of memory before each
transactional access. [28]

For a managed platform, faults are not an issue. An error
due to an invalid memory access or execution of an illegal op-
eration is converted into an exception that a managed STM
can lazily validate and recover from. Nevertheless, incon-
sistent writes are problematic. In the example in Figure 5
inconsistent write to z and corresponding undo action intro-
duce a data race and lead to incorrect result not allowed by
the Java memory model.

Enforcing observable consistency is sufficient to ensure
speculation safety for data-race free programs. Informally,
we make the following argument. Because of consistency, a
racy access introduced by speculation must be part of some
valid execution of that transaction. Suppose, after the spec-
ulative execution of that racy access, we suspend all other
transactions. In our new execution, the speculative transac-
tion should commit and complete. If the transactional ac-
cess was racy in the original execution, however, it it is still
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racy in the modified execution. Thus, with observable con-
sistency, if a speculative execution introduces a data race,
the program must not be data-race free.

Figure 6, however, shows that enforcing observable con-
sistency is insufficient to ensure speculation safety in Java.
Although this program has a data race, the Java memory
model still disallows the result z == 1 and y == 0. As this
example shows, an STM cannot publish a transactional write
even when the transaction is in a consistent state (as in
Thread 2) unless the transaction is guaranteed to commit.
In other words, a weakly atomic STM with in-place-updates
cannot provide semantics that are as strong as locks in Java.

2.3 Discussion
We argue that all of the safety properties discussed in this

section must be preserved by a Java STM. To date, the only
scalable STM implementations that meet this criteria are
strongly atomic [24]. Nevertheless, given the overhead of
strong atomicity on non-transactional code, there remains a
compelling argument for weakly atomic STM designs.

However, all published weakly atomic STM implementa-
tions suffer from one or more of the problems discussed here.
Eager versioning STM systems can exhibit both out-of-thin-
air (i.e., granularity or speculation) violations as well as or-
dering (i.e., privatization or publication) violations. Lazy
versioning STM systems are somewhat safer: they avoid
speculation problems by only allowing writes to become vis-
ible on commit, but they too allow ordering violations.

The existing techniques [2, 14, 25, 26, 28] provide all the
safety guarantees only for race-free programs. These tech-
niques may be sufficient for non-managed languages such as
C++, as C and C++ communities [6, 27] seem to converge
to memory models that permit catch fire behavior on racy
programs. However, they are not sufficient to guarantee cor-
rect execution in a Java STM. In the remainder of this paper,
we will explore different weakly atomic STM semantics and
implementations that provide safety guarantees even in the
presence of data races.

3. SINGLE GLOBAL LOCK ATOMICITY
Short of strong atomicity, the simplest and most intuitive

semantics is to consider transactions as if executed under
a single global lock [18, 10]. We refer to this semantics
as single global lock atomicity (SGLA). With this model,
we can define the semantics of a transactional program to
be equivalent to a corresponding non-transactional program
where every transactional region is converted as follows:

atomic { S; } −→
synchronized (global_lock) { S; }

SGLA is appealing for a number of reasons. First, it
matches our natural understanding of transactions. It pro-
vides complete isolation and serializability over all transac-
tions. Second, it provides sequentially consistent semantics
for correctly synchronized code. Third, combined with the
strong guarantees of the Java memory model, it provides
a reasonable behavior for programs with races. For exam-
ple, it tolerates the benign race in Figure 1 and prevent the
private value from leaking to another thread. Finally, it
leverages years of research into the semantics of lock-based
synchronization.

3.1 Implementing SGLA
To implement this model, we build upon an earlier soft-

ware stack [2, 24] that provides both weakly and strongly
isolated update-in-place transactional memory implementa-
tions. As with those implementations, we rely on optimistic
read versioning, encounter time 2-phase locking for writes,
read-set validation prior to commit, and conflict detection
at either an object or block granularity. However, we fun-
damentally altered our new TM implementation to enforce
the safety properties discussed in the previous section.

3.1.1 Write Buffering
Our weakly atomic implementation is a canonical write-

buffering STM similar to those described by Harris and
Fraser [12] and in TL2 [8]. Each transactional write is
buffered into thread local data structures. A transactional
read must check these data structures before accessing the
shared heap to ensure that it obtains the correct value.
Writes acquire a lock at encounter time and record that
fact. Reads add a new entry to the transactional read set.
Before a transaction commits, it must validate the read set.
If the transaction is valid, it copies all buffered data into the
shared heap and releases all write locks. Note, to provide
granular safety, only modified locations are written to the
heap. If the transaction is invalid, it discards its local buffer
and restarts the transaction.

As in TL2 [8], we use a global linearization timestamp, and
we generate a local timestamp for each transaction imme-
diately prior to validation by incrementing the global one.
TL2 assumes a segregated memory, and in this case, the
local timestamp ordering directly reflects the serialization
order of the transactions. The point at which a transaction
generates its local timestamp is sometimes referred to as its
linearization point.

Unlike TL2, we do not use this timestamp to enforce con-
sistent execution prior to potentially unsafe operations (such
as reads or writes to the heap). In Java, this is unneces-
sary as exception handling allows us to trap all faults (i.e.,
no faults are catastrophic), and we can rely on buffering of
writes to delay those operations until the state is consis-
tent. Instead, we use timestamps to enforce publication and
privatization safety, as discussed below.

We use a commit log to buffer writes. To ensure that field
reads within transactions see the correct values, we must
also add code that checks the commit log for any writes to
the same address. Because we use encounter-time locking,
this only needs to be done when we read data that is already
locked.

Our basic write buffering implementation guarantees that
values do not appear out of thin air. It maintains granular
safety and speculation safety. As in Harris and Fraser [12],
we enforce ordering on non-transactional volatile and lock
operations by essentially treating them as single operation
transactions. Below, we discuss how we augment our imple-
mentation to enforce ordering properties.

3.1.2 Commit Linearization for Privatization
In a write buffering STM, writes are performed after the

linearization point. Unless we prevent it, these transac-
tional writes can inadvertently race with non-transactional
accesses on another thread leading to privatization safety
violations. Privatization solutions for write buffering have
been proposed in the literature [26]. Solutions that avoid
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TxnCommit(desc){
mynum = getTxnNextLinearizationNumber();
commitStampTable[desc->threadid] = mynum;

if(validate(desc)) {
// commit: publish values to shared memory
...
commitStampTable[desc->threadid] = MAXVAL;
// release locks
...
Quiesce(commitStampTable, mynum);

} else {
commitStampTable[desc->threadid] = MAXVAL;
// abort : discard & release
...

}
}

Quiesce(stampTable, mynum) {
for(id = 0; id < NumThreads; ++id)

while(stampTable[id] < mynum)
yield();

}

Figure 7: Commit linearization

non-transactional barriers essentially implement commit lin-
earization, a simple form of quiescence [8, 28] that ensures
that transactions complete in linear order.

In our implementation, shown in Figure 7, we adopt this
approach by recording when a transaction has reached its
linearization point in commitStampTable shared data struc-
ture. After a transaction has published all its buffered val-
ues to shared memory, it signals that it is done by setting
its entry to MAXVAL, it releases its locks, and it iterates over
other threads in the system waiting for their completion. On
abort, it does not have to wait as no transactional writes are
actually published, and there is no ordering to enforce.

Commit linearization enforces privatization safety by cre-
ating an explicit ordering from the end of a transaction to
any following synchronizing action on another thread (i.e.,
the privatizing action), and transitively, from a transac-
tional write (performed before transaction end) and a non-
transaction read (performed after the privatizing action).
Because we treat volatiles and lock operations transaction-
ally, our approach safely covers any ordering action.

3.1.3 Start Linearization for Publication Safety
In a write buffering STM, read operations are performed

before the linearization point. Although they are validated
afterward, a weakly atomic STM’s validation process will
not detect conflicts due to non-transactional accesses. For
example, Thread 1’s transactional read of data in Figure 1
is performed before Thread 1’s transaction (which linearizes
first), but validation will not detect the conflict with Thread
1’s non-transactional write of the same field.

To enforce publication safety, we implement start lineariza-
tion. Start linearization is another form of quiescence that,
in this case, ensures that start order matches linearization
and commit order. We set the linearization timestamp when
a transaction begins. When a transaction reaches its lin-
earization point, it must wait its turn to proceed. This en-
sures that it will not indirectly publish the result of a non-
transactional write. In Figure 1, Thread 1’s transaction will
wait on Thread 2’s transaction before it linearizes, which,
in turn, prevents Thread 2 from reading an updated value
from ready (which would still be in Thread 1’s buffer).

TxnStart(Descriptor* desc) {
mynum = getTxnNextLinearizationNumber();
startStampTable[desc->threadid] = mynum;
...

}

TxnCommit(desc){
mynum = startStampTable[desc->threadid];
startStampTable[desc->threadid] = MAXVAL;
Quiesce(startStampTable, mynum);
commitStampTable[desc->threadid] = mynum;

if(validate(desc))
...

}

Figure 8: Start linearization

Figure 8 provides high-level pseudocode for start lineariza-
tion. Start linearization enforces publication safety by creat-
ing an explicit ordering from a synchronizing action (i.e., the
publishing action) on one thread and the start of a transac-
tion on another. This, in turn, enforces a runtime ordering
between a non-transactional access (before the publishing
action) and a following conflicting transactional access (af-
ter transaction start).

We argue that the above mechanisms provide single global
lock atomicity semantics for transactional Java programs.
Write buffering ensures that values are never created out
of thin air. Commit and start linearization enforce privati-
zation and publication safety and avoid ordering violations.
The linearization number for each transaction defines a total
ordering. If the linearization number of one transaction is
smaller (greater) than the corresponding linearization num-
ber of another, then the first is ordered before (after) the
second.

Note, an SGLA execution may be mapped to a semanti-
cally equivalent single lock execution via a series of transpo-
sitions of adjacent operations. [20] In contrast to an imple-
mentation that explicitly uses single global locks, our SGLA
implementation allows concurrent execution of transactions
in a staggered, pipelined fashion. This staggered execution
provides an explicit total ordering over all transactions.

4. DISJOINT LOCK ATOMICITY
SGLA arguably imposes ordering in situations where a

programmer might not actually expect one. For the incor-
rectly synchronized example in Figure 9, SGLA imposes an
ordering between the empty transaction on the left and the
transaction on the right even though they appear unrelated.
It disallows the final result of val == 42.

An alternative model is to only impose an ordering be-
tween transactions that conflict. We refer to this semantics
as disjoint lock atomicity (DLA). We denote two transac-
tions as conflicting if there exists some memory location loc

where one transaction writes to loc and the other either
reads or writes to it. If no such conflicting access exists, the
transactions do not have to be ordered with respect to each
other. If a conflict exists, the transactions are ordered, and
a happens-before relation exists from the end of the first to
the beginning of the second. Similar semantics are suggested
by Harris and Fraser [12] and Grossman, et al. [10]. 3

3DLA is essentially the same as the weakest “conflicting re-
gions” semantics defined by Grossman, et al. [10]
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Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic { }
5: ready = true;
6: if(ready)
7: val = tmp;
8: }

Can val == 42?

Figure 9: Publication via empty transaction

Intuitively, under DLA, any transactional execution has a
semantically equivalent lock-based one where each transac-
tion is protected by some minimal set of locks such that two
transactions share a common lock if and only if they con-
flict. From an ordering perspective, all locks are acquired in
some canonical order (to avoid deadlock) at the beginning
of a transaction and released at the end.

DLA is somewhat more difficult to reason about than
SGLA. In contrast to SGLA, we cannot statically construct
an equivalent lock-based program with DLA. First, our se-
mantics are dynamic. The disjoint “locks” must be deter-
mined at runtime to reflect the data accessed in a given
execution. Two different executions of the same transaction
may touch completely different locations. Second, our se-
mantics are prescient. The “locks”must be acquired in some
canonical order at the beginning of the transaction to (a)
avoid deadlock and (b) ensure that conflicting transactions
do not overlap from the perspective of external observers
(e.g., via non-transactional memory accesses). In practice,
for non-trival transactional regions, it is undecidable to de-
termine what data and locks would be required ahead of
time.

Nevertheless, we believe that DLA is still relatively intu-
itive for programmers to reason about. As with SGLA, it
provides familiar guarantees for programmer familiar with
locks and leverages years of research into the semantics of
locks. We believe that for race-free programs, SGLA and
DLA allow for the same set of observable behaviors. On the
other hand, DLA provides weaker guarantees in the pres-
ence of races. For example, it allows the results prohibited
by SGLA in Figure 9. But, it provides equivalent guarantees
for the racy programs in Figures 1 and 12.

4.1 Implementing DLA
To implement DLA, we make a slight modification to our

SGLA implementation. In particular, we decouple start lin-
earization from commit linearization as shown in Figure 10.
This decoupling allows independent transactions to start
and commit in different orders.

For example, consider the interleaving in Figure 11. Thread
2’s transaction begins first. When Thread 1’s transaction
can commit, it must wait for Thread 2 to reach its lineariza-
tion point. However, at this point, Thread 1 may commit
first (i.e., if it acquires an earlier linearization number in
Figure 10). For Figure 11, this behavior is not permitted
under SGLA but is allowable under DLA. Since the two
transactions do not conflict, they are unordered by DLA.

We argue that this modified implemenation provides dis-
joint lock atomicity semantics for transactional Java pro-

TxnStart(Descriptor* desc) {
mynum = getTxnNextStartNumber();
startStampTable[desc->threadid] = mynum;
...

}

TxnCommit(desc){
startStampTable[desc->threadid] = MAXVAL;
Quiesce(startStampTable, mynum);
mynum = getTxnNextLinearizationNumber();
commitStampTable[desc->threadid] = mynum;

if(validate(desc)) {
...

}

Figure 10: Decoupled start linearization for DLA

Initially x = y = 0
Thread 1 Thread 2

1: atomic {
2: t1 = x;
3: x = 1;
4: atomic { z = 1;}
5: t2 = y;
7: y = 1;
8: }

Can t1 == 0 and t2 == 0?

Figure 11: Disjoint lock atomicity != Single global
lock atomicity

grams. Note that transactions that conflict are properly
ordered. For these transactions, the start order, lineariza-
tion order, and commit order are the same. To understand
this, consider the point in TxnCommit immediately after a
transaction quiesces on the startStampTable but before it
acquires a linearization number. If one transaction starts
before the second but commits after it, due to start and
commit linearization, both transactions must have simulta-
neously been at this point. In other words, the first trans-
action quiesced first on startStampTable, but the second
overtook it acquire an earlier linearization number. How-
ever, if two transactions conflict then a record in the write
set of one must be in either the write set of the other (which
cannot happen simultaneously) or the read set of the other
(which will trigger a validation failure and abort).

The start and linearization numbers for transactions com-
bine to define a partial ordering. If the start number and lin-
earization number of one transaction are less (greater) than
the corresponding start number and linearization number of
another, then the first is ordered before (after) the second.
If the start and linearization orders do not match, the trans-
actions are not ordered with respect to each other and, as
argued above, cannot conflict.

The arguments for race-free programs (sequential consis-
tency) and racy programs (consistency with Java’s memory
model) are essentially the same as before. In this case, the
implementation ensures that start, linearization, and com-
mit points are already in the proper order for conflicting
transactions. Thus any interleaved execution can be trans-
formed to an equivalent non-interleaved execution that re-
spects the partial order above.
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Initially data = 42, ready = false, val = 0
Thread 1 Thread 2

1: atomic {
2: tmp = data;
3: data = 1;
4: atomic {
5: test = ready;
6: }
7: ready = true;
8: val = tmp;
9: }

Can test == false and val == 42?

Figure 12: Publication via anti-dependence

5. ASYMMETRIC LOCK ATOMICITY
For DLA and SGLA semantics, start linearization pro-

vides a conservative mechanism to enforce publication safety.
From an implementation standpoint, read-only publishing
actions force a conservative approach. In most scalable STM
systems, read operations are invisible. When a transaction
reads a value, it does not acquire a shared lock or other-
wise communicate its read operation to other threads. Un-
der DLA or SGLA, however, read operations can serve as
publishing actions and invalidate transactional accesses on
another thread. Figure 12 illustrates this as Thread 1’s read
on ready invalidates Thread 2’s earlier read on data. Start
linearization prevents ordering violations by forcing threads
to wait. The example in Figure 12, however, is rather con-
trived. Thread 1’s transaction is read-only and, intuitively,
it is odd to view it as a publishing action. Moreover, Thread
2 cannot glean any information from Thread 1 a priori. It is
only after the fact that one can look at the global execution
and determine the presence of an ordering.

We introduce an alternative semantics, asymmetric lock
atomicity (ALA), that relaxes DLA further to not support
such examples. Intuitively, the idea behind ALA is that in-
formation may flow into a transaction only via read opera-
tions. As in DLA, any transactional execution has a seman-
tically equivalent lock-based one. In ALA, however, only
locks protecting read accesses need to be acquired at the
beginning of a transaction. Locks protecting write accesses
may be acquired lazily at any point before the write oper-
ation. (From the compiler’s perspective, lazy lock acquisi-
tion also has relaxed fence semantics: it does not artificially
block compiler reordering of memory accesses within trans-
actions.) In Figure 1, ALA still provides a strong ordering
guarantee: Thread 2 reads ready and “acquires the lock”
(in the equivalent lock execution) at the beginning on the
transaction. As a result, the entire transaction must see the
effect of Thread 1. On the other hand, in Figure 12, ALA
provides a weaker ordering guarantee. Thread 1 is only or-
dered before the write in Thread 2’s transaction. The early
read of data may access the old value.

To formalize the intuition behind ALA, we need to re-
lax the program order between memory accesses in a trans-
action to avoid artificial fence constraints induced by lazy
lock acquisition. As in the standard Java model, there is a
program order relationship between any non-transactional
accesses in the same thread. But, transactional accesses
are ordered only if execution of the second access is depen-
dent on the information that could flow into the transaction
through the first access. We define a strict program order re-

TxnStart(Descriptor* desc) {
desc->startTimestamp = getTxnNextStartNumber();
...

}

TxnOpenForRead(Descriptor* desc, TxnRec * txnRec) {
if (txnRec->isTimeStamp() &&

txnRec > desc->startTimestamp) {
txnAbort(desc);

else {
...

}
}

TxnCommit(Descriptor* desc){
mynum = getTxnNextLinearizationNumber();
commitStampTable[desc->threadid] = mynum;

if(validate(desc)) {
// commit: publish values to shared memory
...
commitStampTable[desc->threadid] = MAXVAL;
// release locks
for (all txnRec in write set)
txnRec = desc->startTimestamp;

...
Quiesce(commitStampTable, mynum);

} else {
commitStampTable[desc->threadid] = MAXVAL;
// abort : discard & release
...

}
}

Figure 13: Lazy start linearization for ALA

lationship (denoted →spo) between memory accesses A and
B executed by the same thread if either 1) A or B are non-
transactional accesses, or 2) A and B belong to different
outer-level transactions, or 3) reordering A and B would
violate single-thread semantics. Essentially, strict program
order preserves the compiler’s (or STM’s) freedom to re-
order operations inside a transaction. For conflicting trans-
actions, there is a synchronization relationship between the
end of the first transaction and either the beginning of the
second (if the conflicting access in the second transaction is
a read) or the access itself (if it is a write). The happens-
before relationship is a transitive closure of synchronization
relationship and strict program order.

5.1 Implementing ALA
Under ALA a read operation cannot serve as a publishing

action. As a result, an ALA implementation can rely upon a
lighterweight mechanism to enforce publication safety. Fig-
ure 13 modifies the DLA implementation to provide ALA se-
mantics instead by performing lazy start linearization. First,
to support lazy start linearization, a transaction must di-
rectly record global timestamps on transactions records in-
stead of independent data-specific version numbers. On
commit, a transaction records its unique start timestamp
on all data it has written. Second, on a read operation, a
transaction must check that the corresponding transaction
record does not contain a timestamp for a transaction that
started after it did. This mechanism is similar to the consis-
tency checks mechanism in TL2 [8] except that it increments
the global time stamp on transaction start rather than com-
mit. Unlike TL2, our implementation allows a transaction
to read the values written by a transaction that started af-
ter it even if that transaction comitted before the start of
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the first transaction because such interleaving cannot lead
to violation of publication safety.

The checks on read operations are sufficient to enforce
publication safety under ALA; no further quiescence is re-
quired on commit for start linearization. As privatization
constraints are unchanged, quiescence for commit lineariza-
tion is still performed.

6. ENCOUNTER-TIME LOCK ATOMICITY
Finally, we can weaken ALA even further to disallow all

racy publication patterns. We define encounter-time lock
atomicity (ELA) such that, in the equivalent lock-based ex-
ecution, all locks may be acquired lazily at any point before
the corresponding data is accessed regardless of whether the
access is a read or write. ELA supports the privatization
pattern, but it does not support racy publication in Fig-
ure 1. It would, however, support the non-racy variation
in Figure 2 where the transaction in Thread 2 accesses data
only in the conditional provided that speculative code motion
is disallowed.

We argue that ELA preserves sequentially consistency for
race-free programs under compiler and hardware reordering
restrictions. It provides full ordering semantics for any pri-
vatization pattern. A program with a publication pattern
can be race-free only if transactional memory accesses to
non-transactional data are dependent on the conflicting ac-
cess. Otherwise, reordering transactions would not change
the set of accessed memory location and the program would
exhibit a race.

6.1 Implementing ELA
ELA requires publication safety only for race-free pro-

grams. This is already provided by the basic write buffering
implementation described in Section 3.1.1. We enforce pri-
vatization safety using commit linearization as described in
Section 3.1.2. Note that an STM that used pessimistic read-
ers implements ELA.

As alluded to above, ELA forces us to consider the interac-
tion of the TM implementation with compiler and hardware
reordering. As our ELA implementation supports ordering
for non-racy publication but not for racy publication, spec-
ulative load hoisting is illegal. Thus, a system that allows
speculative load reordering in the compiler or hardware 4

would still require a stronger implementation such as the
ALA implementation described in Section 5.

7. OTHER WEAK MODELS
Grossman et al. [10] propose two different semantics for

transactions that are weaker than SGLA or DLA. In their
first proposal, which they denote a write →hb read seman-
tics, two transactions are ordered by a happens-before rela-
tionship only if the first writes a value read by the second. In
their second proposal, they strengthen these semantics with
an additional prewrite ordering between two transactions
that only conflict via an output or anti-dependence. That
is, two transactions are ordered by a prewrite relationship if
the first reads or writes a memory location written by the
second. With prewrite semantics, visibility rules are modi-
fied such that the value a read may observe is constrained
by both happens-before and prewrite ordering. As in ALA,
neither semantics require an implementation to disallow the

4IA32 does not allow such reordering.[16]

Initially data = 42, ready = false
Thread 1 Thread 2

1: atomic {
2: data = 1;
3: val = data;
4: atomic {
5: test = ready;
6: }
7: ready = true;
8: }

Can test == false and val == 1?

Figure 14: Variant of publication via anti-
dependence

results shown in Figure 12, or, more generally, allows a read-
only transaction to act as publishing action.

On the other hand, both semantics appear to allow non-
intuitive results for privatization and do not support the
classical privatization examples in the literature [18, 24, 26].
In particular, the synchronizing action (as shown in Figure
3) is typically a transactional write operation. In both of
the weaker semantics proposed by Grossman et al., it is not
ordered with earlier transactions that only read the corre-
sponding memory location [20]. Because of this, these se-
mantics are not strong enough to preserve correctness for
idioms that are race-free under locks.

The above semantics provide generally uniform ordering
rules for memory access operations regardless of whether
they are transactional or non-transactional. Because of this,
semantics that weaken publication ordering (and the val-
ues read by corresponding transactional reads) also inad-
vertantly weaken privatization ordering (and the values of
non-transactional reads). We can avoid the problem above
by introducing different rules on observable values for trans-
actional and non-transactional read operations. We refer to
these semantics as asymmetric flow ordering (AFO). For-
mally, we can define AFO in terms of the happens-before
(→hb) and prewrite (→pw) relations defined by Grossman
et al. [10] for their prewrite ordering semantics discussed
above with two additional changes. First, we strengthen
the happens-before relation such that a →pw b →hb c =⇒
a →hb c if b and c are not part of the same outer-level
transaction. This ensures that memory accesses subsequent
to the conflicting transaction are handled consistently. Sec-
ond, we enforce stricter rules on observable values for non-
transactional reads. Under AFO, a non-transactional read
r may observe a write w unless r(→hb ∪ →pw)+w or there
exists a w′ such that w(→hb ∪ →pw)+w′(→hb ∪ →pw)+r.
On the other hand, a transactional read r may observe a
write w unless r(→hb ∪ →pw)+w or there exists a w′ such
that w(→hb ∪ →pw)+w′ →hb r.

Informally, these semantics are similar but slightly stronger
than ALA as described in Section 5. As in ALA, they do not
allow a read-only transaction to act as a publishing action as
suggested by Figure 12, but do support the publication id-
iom in Figure 1 as well as all privatization idioms. However,
they are slightly more restrictive as illustrated by another
anti-dependence example in Figure 14. In this case, the fi-
nal result (test == false and val == 1) is allowable under
ALA but forbidden under AFO.

While AFO is more esoteric than ALA, it provides some-
what stronger semantics at arguably little implementation
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Thread 1 Thread 2
1: S1;
2: atomic { // T1
3: ...
4: S2;
5: ...
6: }
7: atomic { // T2
8: ...
9: S3;
10: ...
11: }
12: S4;

Figure 15: A generic template for ordering in a
transactional program. Transactions T1 and T2 are
ordered. The ordering guarantees between S1 and
S3, and S2 and S4 depend on the memory model as
shown in Table 1.

cost: the ALA implementation described in Section 5.1 is
sufficiently strong enough to enforce AFO semantics.

8. COMPARING MODELS
All the models described in Sections 3- 6 preserve sequen-

tial consistency for race-free programs and prohibit values
out-of-thin air. The models differ in the ordering guarantees
that they provide for racy programs. Table 1 summarizes
these guarantees using a generic transactional program tem-
plate in Figure 15. For completeness, Table 1 also includes
the information for strong atomicity, weak atomicity, and
two models discussed in Section 7 (AFO and write →hb read
with pre-write ordering (Pre-Write) [10]).

Strong atomicity and SGLA are the only models that un-
conditionally provide publication and privatization safety
for all transactions. DLA provides ordering guarantees only
for non-conflicting transactions. ALA and ELA provide the
same ordering guarantees as DLA for privatization pattern
but relax the ordering for publication pattern. ALA en-
forces publication ordering for all accesses in T2 only if the
information can flow from T1 to T2 (that is, if conflicting
access C in T2 is a read). If conflicting access is a write
then only memory accesses that occur after C and cannot
be non-speculatively moved before C are ordered. (Prac-
tically, this means only the accesses that access the same
location as C.) ELA further weakens the rules by providing
ordering only for accesses that are dynamically dependent
on the conflicting access.

AFO and Pre-Write relax DLA ordering in a different way;
they provide no ordering for transactional reads in a pub-
lication pattern when the conflicting access is a write. In
addition, Pre-Write does not guarantee privatization safety,
and, thus, does not provide sequential consistency for race-
free programs. AFO and Pre-Write do not allow for a lock-
based formulation, as they specify different ordering rules
for transactional reads and writes. Instead, they are for-
mulated using a somewhat unintuitive modification of Java
Memory Model visibility rules. Finally, weak atomicity pro-
vides no guarantees on ordering between transactional and
non-transactional memory accesses.

We believe that either SGLA, DLA, ALA, or ELA is an ac-
ceptable memory model for a weakly atomic Java STM from
the semantics point of view. All preserve sequential consis-
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Figure 16: Tsp execution time over multiple threads
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Figure 17: HashMap execution time over multiple
threads

tency for race-free programs, provide well-defined behavior
for racy programs and can be explained to a programmer in
terms of locks. Practically, each of these models pose dif-
ferent constraints on STM implementations. We discuss the
performance implications of the memory model choice in the
next section.

9. EXPERIMENTS
In this section, we evaluate our new weakly atomic imple-

mentations and compare it to our earlier implementations
of weak and strong atomicity [2, 24] in a Java system. We
performed our experiments on an IBM xSeries 445 machine
running Windows 2003 Server Enterprise Edition. This ma-
chine has 16 2.2GHz Intel R© Xeon R© processors and 16GB
of shared memory arranged across 4 boards. Each processor
has 8KB of L1 cache, 512KB of L2 cache, and 2MB of L3
cache, and each board has a 64MB L4 cache shared by its
4 processors. In all experiments, we use an object-level con-
flict detection granularity in our STM. We also do not use
any offline whole program optimizations [24].

We evaluate eight different variants altogether:

• Synch represents the original lock-based version us-
ing Java synchronized with no transactions or STM
barriers.
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Publication: Privatization:
S1 happens before S3? S2 happens before S4?

Memory T1 and T2 T1 and T2 conflict on C in T2 T1 and T2 T1 and T2
Model do not conflict C is read C is write do not conflict conflict
Strong Yes Yes Yes Yes Yes
SGLA Yes Yes Yes Yes Yes
DLA No Yes Yes No Yes
ALA No Yes if C →spo S3 No Yes
ELA No if C →spo S3 if C →spo S3 No Yes
AFO No Yes if S3 is a write No Yes
Pre-Write No Yes if S3 is a write No No
Weak No No No No No

Table 1: Summary of memory models based upon Figure 15 template.
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Figure 18: TreeMap execution time over multiple
threads

• WeakEager is our weakly atomic, in-place update
STM.[2] It provides granular safety, but no other safety
properties.

• WeakLazy is our baseline write buffering STM de-
scribed in Section 3.1.1. In addition to granular safety,
it also provides consistent execution and speculation
safety.

• SGLA adds publication and privatization safety to the
above via start and commit linearization as discussed
in Section 3.1.

• DLA weakens the above to provide disjoint lock se-
mantics, as described in Section 4.1.

• ALA weakens the above further to provide asymmet-
ric lock semantics by combining commit linearization
with lazy start linearization, as described in Section
5.1.

• ELA weakens the above yet further to provide encounter-
time lock semantics by removing any lazy start lin-
earization, as described in Section 6.1.

• Strong is our strongly atomic, in-place update STM.[24]
It provides all of the above safety properties as well as
strong isolation between transactional and non-transactional
code via non-transactional barriers.

Figures 16,17 and 18 show the results of our experiments
for the following workloads.

9.1 TSP
TSP is a traveling salesman problem solver. Threads per-

form their searches independently, but share partially com-
pleted work. The workload is fine-grained and already scales
with locks. Interestingly, the workload contains a benign
race where a shared variable representing the current min-
imum is monotonically decremented in a transaction, but
read outside. As far as we can tell, our weak implementa-
tions execute correctly, even though our weakest implemen-
tation may cause threads to inadvertently see this variable
increase (due to speculation and rollback).

The overhead of weakly atomic implementations is low as
relatively little time is spent inside of transactions. How-
ever, our WeakLazy implementation does not scale quite as
well. The additional cost of commit linearization and start
linearization is negligible. Our Strong implementation suf-
fers from significant overhead on a single thread, but scales
well and actually provides slightly better performance than
SGLA at 16 processors.

9.2 java.util.HashMap
HashMap is a hashtable data structure from the Java class

library. We test it using a driver execution 10,000,000 oper-
ations over 20,000 elements with a mix of 80% gets and 20%
puts. The work is spread over the available processors, and
little time is spent outside a transaction. The workload is
coarse-grained; the synchronized version uses a single lock
on the entire data structure and does not scale at all.

As most of the time is spent inside a transaction, the over-
head of strong atomicity is minimal. The differences between
our WeakEager, WeakLazy, and Strong are fairly small. All
scale well to 16 processors. However, the cost of commit and
start linearization is significant as the number of processors
increases. At 16 processors, our SGLA implementation is
significantly worse than Strong and even Synch. Although
DLA weakens the constraints of SGLA, it provides no per-
formance benefit. In contrast, ALA is at least competitive
with Synch and demonstrates the benefit of lazy start lin-
earization. Nevertheless, it and ELA do not scale well due
to commit linearization.

9.3 java.util.TreeMap
TreeMap is a red-black tree from the Java class library.

We use the same driver and parameters as above. In com-
parison to HashMap, transactions are larger as individual
puts and get are O(log(n)) rather than O(1). Figure 18
shows the results for this bechmark. Qualitatively, the re-
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sults are similar. However, in this case, SGLA scales well
to 4 processors and degrades quickly afterward. As before,
our SGLA implementation is significantly worse than Strong
and Synch at 16 processors. In this case, both DLA, ALA,
and WeakLazyCL decay noticeably more slowly than SGLA.
All three are faster than Synch at 16 processors.

9.4 Discussion
Our two safest implementations (SGLA and Strong) both

impose significant costs to provide safety guarantees. How-
ever, the two variants show complementary strengths and
weaknesses. Strong suffers from significant single thread
overhead, but scales quite well with multiple processors.
Our SGLA implementation provides more reasonable sin-
gle thread performance, but, when stressed with a constant
stream of transactions, suffers from serious scalability issues
due to commit and start linearization. While weakening the
semantics (via DLA, ALA, or ELA) can alleviate these con-
cerns, it does not remove them.

10. CONCLUSIONS
In this paper, we have discussed the implications of weakly

atomic semantics on STM from the perspective of the Java
memory model, and we have shown that existing weakly
atomic STM implementations fall short of standard Java
principles. We have explored four different weakly atomic
semantics that (a) provide sequential consistency for cor-
rectly synchronized programs and (b) preserve ordering and
prevent out-of-thin air values for all programs. However, we
have also shown that these semantics introduce challenges to
STM design and scalability. Our results suggest that more
research is needed to improve the performance of both strong
and weak atomicity to provide acceptable STM semantics.
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